|
胆固醇代谢途径中相关因子与非酒精性脂肪性肝病的研究
|
Abstract:
非酒精性脂肪性肝病(非酒精性脂肪性肝炎为其严重的亚型)已为我国最常见的慢性肝脏疾病,其发病率仍逐年增加。目前,关于非酒精性脂肪性肝病的发病机制,被广泛认可的是“多重打击学说”,在该学说中的“胆固醇代谢”也被众多学者所关注。因此,本文结合近几年胆固醇代谢途径中相关因子对非酒精性脂肪性肝病的发病机制进行阐述,以期为该病的临床治疗及研究提供相关参考。
Non-alcoholic fatty liver disease (non-alcoholic steatohepatitis is its serious subtype) has been the most common chronic liver disease in China, and its incidence is still increasing year by year. At present, the pathogenesis of nonalcoholic fatty liver disease is widely recognized as the “multi-hit theory”, and the “cholesterol metabolism” in this theory has also been concerned by many scholars. Therefore, in this paper, the pathogenesis of nonalcoholic fatty liver disease is described in combination with the relevant factors in the cholesterol metabolic pathway in recent years in order to provide a relevant reference for the clinical treatment and research of the disease.
[1] | Kerr, T.A. and Davidson, N.O. (2012) Cholesterol and Nonalcoholic Fatty Liver Disease: Renewed Focus on an Old Villain. Hepatology, 56, 1995-1998. https://doi.org/10.1002/hep.26088 |
[2] | Eguchi, Y., Hyogo, H., Ono, M., et al. (2012) Prevalence and Associated Metabolic Factors of Nonalcoholic Fatty Liver Disease in the General Population from 2009 to 2010 in Japan: A Multicenter Large Retrospective Study. Journal of Gastroenterology, 47, 586-595. https://doi.org/10.1007/s00535-012-0533-z |
[3] | Estes, C., Anstee, Q.M., Arias-Loste, M.T., et al. (2018) Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016-2030. Journal of Hepatology, 69, 896-904. https://doi.org/10.1016/j.jhep.2018.05.036 |
[4] | Qiu, Y., Sui, X., Zhan, Y., et al. (2017) Steroidogenic Acute Regulatory Protein (StAR) Overexpression Attenuates HFD-Induced Hepatic Steatosis and Insulin Resistance. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 978-990. https://doi.org/10.1016/j.bbadis.2017.01.026 |
[5] | 路晓荣, 李剑勇. 动物机体胆固醇代谢调控机制研究进展[J]. 动物医学进展, 2019, 40(7): 101-107. |
[6] | Maxfield, F.R. and Tabas, I. (2005) Role of Cholesterol and Lipid Organization in Disease. Nature, 438, 612-621.
https://doi.org/10.1038/nature04399 |
[7] | Kapourchali, F.R., Surendiran, G., Goulet, A. and Moghadasian, M.H. (2016) The Role of Dietary Cholesterol in Lipoprotein Metabolism and Related Metabolic Abnormalities: A Mini-Review. Critical Reviews in Food Science and Nutrition, 56, 2408-2415. https://doi.org/10.1080/10408398.2013.842887 |
[8] | Trapani, L., Segatto, M. and Pallottini, V. (2012) Regulation and Deregulation of Cholesterol Homeostasis: The Liver as a Metabolic “Power Station”. World Journal of Hepatology, 4, 184-190. https://doi.org/10.4254/wjh.v4.i6.184 |
[9] | Zhou, F. and Sun, X. (2021) Cholesterol Metabolism: A Double-Edged Sword in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 9, Article ID: 762828. https://doi.org/10.3389/fcell.2021.762828 |
[10] | Malhotra, P., Gill, R.K., Saksena, S. and Alrefai, W.A. (2020) Disturbances in Cholesterol Homeostasis and Non-Alcoholic Fatty Liver Diseases. Frontiers in Medicine, 7, Article No. 467.
https://doi.org/10.3389/fmed.2020.00467 |
[11] | Alkhouri, N., Dixon, L.J. and Feldstein, A.E. (2009) Lipotoxicity in Nonalcoholic Fatty Liver Disease: Not All Lipids Are Created Equal. Expert Review of Gastroenterology & Hepatology, 3, 445-451. https://doi.org/10.1586/egh.09.32 |
[12] | Takakura, K., Oikawa, T., Nakano, M., et al. (2019) Recent Insights into the Multiple Pathways Driving Non-alcoholic Steatohepatitis-Derived Hepatocellular Carcinoma. Frontiers in Oncology, 9, Article No. 762.
https://doi.org/10.3389/fonc.2019.00762 |
[13] | Min, H.K., Kapoor, A., Fuchs, M., et al. (2012) Increased Hepatic Synthesis and Dysregulation of Cholesterol Metabolism Is Associated with the Severity of Nonalcoholic Fatty Liver Disease. Cell Metabolism, 15, 665-674.
https://doi.org/10.1016/j.cmet.2012.04.004 |
[14] | Liu, M.X., Gao, M., Li, C.Z., et al. (2017) Dicer1/miR-29/HMGCR Axis Contributes to Hepatic Free Cholesterol Accumulation in Mouse Non-Alcoholic Steatohepatitis. Acta Pharmacologica Sinica, 38, 660-671.
https://doi.org/10.1038/aps.2016.158 |
[15] | Johnson, B.M. and DeBose-Boyd, R.A. (2018) Underlying Mechanisms for Sterol-Induced Ubiquitination and ER-Associated Degradation of HMG CoA Reductase. Seminars in Cell & Developmental Biology, 81, 121-128.
https://doi.org/10.1016/j.semcdb.2017.10.019 |
[16] | Sun, C., Huang, F., Liu, X., et al. (2015) MiR-21 Regulates Triglyceride and Cholesterol Metabolism in Non-Alcoholic Fatty Liver Disease by Targeting HMGCR. International Journal of Molecular Medicine, 35, 847-853.
https://doi.org/10.3892/ijmm.2015.2076 |
[17] | Takei, A., Nagashima, S., Takei, S., et al. (2020) Myeloid HMG-CoA Reductase Determines Adipose Tissue Inflammation, Insulin Resistance, and Hepatic Steatosis in Diet-Induced Obese Mice. Diabetes, 69, 158-164.
https://doi.org/10.2337/db19-0076 |
[18] | Enjoji, M., Yasutake, K., Kohjima, M. and Nakamuta, M. (2012) Nutrition and Nonalcoholic Fatty Liver Disease: The Significance of Cholesterol. International Journal of Hepatology, 2012, Article ID: 925807.
https://doi.org/10.1155/2012/925807 |
[19] | Marí, M., Caballero, F., Colell, A., et al. (2006) Mitochondrial Free Cholesterol Loading Sensitizes to TNF- and Fas-Mediated Steatohepatitis. Cell Metabolism, 4, 185-198. https://doi.org/10.1016/j.cmet.2006.07.006 |
[20] | Brown, M.S., Radhakrishnan, A. and Goldstein, J.L. (2018) Retrospective on Cholesterol Homeostasis: The Central Role of Scap. Annual Review of Biochemistry, 87, 783-807. https://doi.org/10.1146/annurev-biochem-062917-011852 |
[21] | Van Rooyen, D.M. and Farrell, G.C. (2011) SREBP-2: A Link between Insulin Resistance, Hepatic Cholesterol, and Inflammation in NASH. Journal of Gastroenterology and Hepatology, 26, 789-792.
https://doi.org/10.1111/j.1440-1746.2011.06704.x |
[22] | Nakamuta, M., Fujino, T., Yada, R., et al. (2009) Impact of Cholesterol Metabolism and the LXRalpha-SREBP-1c Pathway on Nonalcoholic Fatty Liver Disease. International Journal of Molecular Medicine, 23, 603-608.
https://doi.org/10.3892/ijmm_00000170 |
[23] | Zhao, L., Chen, Y., Tang, R., et al. (2011) Inflammatory Stress Exacerbates Hepatic Cholesterol Accumulation via Increasing Cholesterol Uptake and de Novo Synthesis. Journal of Gastroenterology and Hepatology, 26, 875-883.
https://doi.org/10.1111/j.1440-1746.2010.06560.x |
[24] | Cheung, O., Puri, P., Eicken, C., et al. (2008) Nonalcoholic Steatohepatitis Is Associated with Altered Hepatic MicroRNA Expression. Hepatology, 48, 1810-1820. https://doi.org/10.1002/hep.22569 |
[25] | Xie, X., Liao, H., Dang, H., et al. (2009) Down-Regulation of Hepatic HNF4alpha Gene Expression during Hyperinsulinemia via SREBPs. Molecular Endocrinology, 23, 434-443. https://doi.org/10.1210/me.2007-0531 |
[26] | Malhotra, P., Aloman, C., Ankireddy, A., et al. (2017) Overactivation of Intestinal Sterol Response Element-Binding Protein 2 Promotes Diet-Induced Nonalcoholic Steatohepatitis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 313, G376-G385. https://doi.org/10.1152/ajpgi.00174.2017 |
[27] | Svegliati-Baroni, G., Pierantonelli, I., Torquato, P., et al. (2019) Lipidomic Biomarkers and Mechanisms of lipotoXicity in Non-Alcoholic Fatty Liver Disease. Free Radical Biology and Medicine, 144, 293-309.
https://doi.org/10.1016/j.freeradbiomed.2019.05.029 |
[28] | Li, H., Yu, X.H., Ou, X., et al. (2021) Hepatic Cholesterol Transport and Its Role in Non-Alcoholic Fatty Liver Disease and Atherosclerosis. Progress in Lipid Research, 83, Article ID: 101109.
https://doi.org/10.1016/j.plipres.2021.101109 |
[29] | Lyu, J., Imachi, H., Fukunaga, K., et al. (2020) Role of ATP-Binding Cassette Transporter A1 in Suppressing Lipid Accumulation by Glucagon-Like Peptide-1 Agonist in Hepatocytes. Molecular Metabolism, 34, 16-26.
https://doi.org/10.1016/j.molmet.2019.12.015 |
[30] | Vega-Badillo, J., Gutiérrez-Vidal, R., Hernández-Pérez, H.A., et al. (2016) Hepatic miR-33a/miR-144 and Their Target Gene ABCA1 Are Associated with Steatohepatitis in Morbidly Obese Subjects. Liver International, 36, 1383-1391.
https://doi.org/10.1111/liv.13109 |
[31] | Yoon, H.Y., Lee, M.H., Song, Y., et al. (2021) ABCA1 69C>T Polymorphism and the Risk of Type 2 Diabetes Mellitus: A Systematic Review and Updated Meta-Analysis. Frontiers in Endocrinology, 12, Article ID: 639524.
https://doi.org/10.3389/fendo.2021.639524 |
[32] | Costet, P., Luo, Y., Wang, N., et al. (2000) Sterol-Dependent Transactivation of the ABC1 Promoter by the Liver X Receptor/Retinoid X Receptor. Journal of Biological Chemistry, 275, 28240-28245.
https://doi.org/10.1074/jbc.M003337200 |
[33] | Ioannou, G.N., Morrow, O.B., Connole, M.L. and Lee, S.P. (2009) Association between Dietary Nutrient Composition and the Incidence of Cirrhosis or Liver Cancer in the United States Population. Hepatology, 50, 175-184.
https://doi.org/10.1002/hep.22941 |
[34] | Van Rooyen, D.M., Larter, C.Z., Haigh, W.G., et al. (2011) Hepatic Free Cholesterol Accumulates in Obese, Diabetic Mice and Causes Nonalcoholic Steatohepatitis. Gastroenterology, 141, 1393-1403.E5.
https://doi.org/10.1053/j.gastro.2011.06.040 |
[35] | Yasutake, K., Nakamuta, M., Shima, Y., et al. (2009) Nutritional Investigation of Non-Obese Patients with Non-Alcoholic Fatty Liver Disease: The Significance of Dietary Cholesterol. Scandinavian Journal of Gastroenterology, 44, 471-477. https://doi.org/10.1080/00365520802588133 |
[36] | Musso, G., Gambino, R., De Michieli, F., et al. (2003) Dietary Habits and Their Relations to Insulin Resistance and Postprandial Lipemia in Nonalcoholic Steatohepatitis. Hepatology, 37, 909-916.
https://doi.org/10.1053/jhep.2003.50132 |
[37] | Henkel, J., Alfine, E., Sain, J., et al. (2018) Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol. Nutrients, 10, Article No. 1326. https://doi.org/10.3390/nu10091326 |
[38] | Comhair, T.M., et al. (2011) Dietary Cholesterol, Female Gender and n-3 Fatty Acid Deficiency Are More Important Factors in the Development of Non-Alcoholic Fatty Liver Disease than the Saturation Index of the Fat. Nutrition & Metabolism, 8, 4. |
[39] | Marchesini, G., Petta, S. and Dalle, G.R. (2016) Diet, Weight Loss, and Liver Health in Nonalcoholic Fatty Liver Disease: Pathophysiology, Evidence, and Practice. Hepatology, 63, 2032-2043. https://doi.org/10.1002/hep.28392 |
[40] | Dongiovanni, P., Petta, S., Mannisto, V., et al. (2015) Statin Use and Non-Alcoholic Steatohepatitis in at Risk Individuals. Journal of Hepatology, 63, 705-712. https://doi.org/10.1016/j.jhep.2015.05.006 |
[41] | Muraoka, T., Aoki, K., Iwasaki, T., et al. (2011) Ezetimibe Decreases SREBP-1c Expression in Liver and Reverses Hepatic Insulin Resistance in Mice Fed a High-Fat Diet. Metabolism, 60, 617-628.
https://doi.org/10.1016/j.metabol.2010.06.008 |
[42] | Jun, B.G. and Cheon, G.J. (2019) The Utility of Ezetimibe Therapy in Nonalcoholic Fatty Liver Disease. The Korean Journal of Internal Medicine, 34, 284-285. https://doi.org/10.3904/kjim.2019.043 |
[43] | Neuschwander-Tetri, B.A., Loomba, R., Sanyal, A.J., et al. (2015) Farnesoid X Nuclear Receptor Ligand Obeticholic Acid for Non-Cirrhotic, Non-Alcoholic Steatohepatitis (FLINT): A Multicentre, Randomised, Placebo-Controlled Trial. The Lancet, 385, 956-965. https://doi.org/10.1016/S0140-6736(14)61933-4 |