|
骨缺损治疗方法综述
|
Abstract:
目前因为交通事故、创伤、感染等因素导致的骨缺损越来越常见,骨缺损的治疗负担仍然很大,这些损伤具有重要深远的临床和经济社会影响。长期受到并发症和再手术发生率高以及功能结果差的限制,其治疗仍存在困难。对于骨缺损的治疗手段也是备受关注,传统的治疗方式主要是骨移植手术,而随着现代技术的不断发展,也出现了一些先进的治疗技术,比如Masquelet技术、Ilizarov骨搬移技术、组织工程骨技术、基因疗法等。本篇文章就目前现有的一些治疗研究方法进行了综述,为临床治疗提供一些治疗思路。
At present, bone defects caused by traffic accidents, trauma, infection and other factors are be-coming more and more common, and the treatment burden of bone defects is still great. These in-juries have important and far-reaching clinical, economic and social effects. Limited by the high incidence of complications, reoperation and poor functional results for a long time, its treatment is still difficult. The treatment of bone defects has also attracted much attention. The traditional treatment method is mainly bone transplantation. With the continuous development of modern technology, some advanced treatment technologies have emerged, such as masquelet technology, Ilizarov bone transfer technique, Tissue engineering, bone technology and gene therapy. This arti-cle reviews some existing treatment research methods, and provides some treatment ideas for clinical treatment.
[1] | 秦宇星, 任前贵, 沈佩锋. 组织工程骨技术治疗骨缺损的优越性[J]. 中国组织工程研究, 2020, 24(24): 3877-3882. |
[2] | 张萌,张慎. 启自体与同种异体骨软骨移植治疗软骨缺损研究进展[J]. 医学临床研究, 2012, 29(5): 948-951. |
[3] | Miller, C. and Chiodo, C. (2016) Autologous Bone Graft in Foot and Ankle Surgery. Foot and Ankle Clinics, 21, 825-837.
https://doi.org/10.1016/j.fcl.2016.07.007 |
[4] | Klifto, C.S., Gandi, S.D. and Sapienza, A. (2018) Bone Graft Op-tions in Upper-Extremity Surgery. The Journal of Hand Surgery, 43, 755-761.e2. https://doi.org/10.1016/j.jhsa.2018.03.055 |
[5] | 唐陵, 金国栋, 曾永文, 等. 二期自体髂骨移植治疗开放性掌指骨缺损35例[J]. 中国中医骨伤科杂志, 2020, 28(6): 78-80. |
[6] | 雷紫雄, 李浩淼, 陆明, 等. 定制节段人工假体复合结构骨移植重建骨干肿瘤术后大段骨缺损的临床研究[J]. 骨科, 2019, 10(4): 266-272. |
[7] | Azi, M., Aprato, A., Santi, I., et al. (2016) Autologous Bone Graft in the Treatment of Post-Traumatic Bone Defects: A Systematic Re-view and Meta-Analysis. BMC Musculoskeletal Disorders, 17, Article No. 465.
https://doi.org/10.1186/s12891-016-1312-4 |
[8] | 王体惠, 王旭, 王晓露, 等. 两种方法处理Rand II型胫骨平台骨缺损全膝关节置换的对比[J]. 中国矫形外科杂志, 2017, 25(18): 1652-1657. |
[9] | 杨思敏, 王新卫. 自体骨移植修复骨缺损的临床研究进展[J]. 中国疗养医学, 2019, 28(9): 945-948. |
[10] | 宁钰, 赵红斌. 骨缺损修复方法的研究进展[J]. 世界最新医学信息文摘, 2019(50): 115. |
[11] | 邢浩, 张永红, 王栋. 长骨大段骨缺损修复方法的优势与不足[J]. 中国组织工程研究, 2021, 25(3): 426-430. |
[12] | 王国伟, 刘伟, 魏延明, 等. 兔冷冻与脱钙冻干异体骨修复骨缺损的比较[J]. 中国矫形外科杂志, 2020, 28(17): 1596-1599. |
[13] | Masquelet, A.C. (2003) Muscle Re-construction in Reconstructive Surgery: Soft Tissue Repair and Long Bone Reconstruction. Langenbeck’s Archives of Surgery, 388, 344-346. https://doi.org/10.1007/s00423-003-0379-1 |
[14] | Saxer, F. and Eckardt, H. (2017) Re-construction of Osseous Defects Using the Masquelet Technique. Der Orthopade, 46, 665-672. https://doi.org/10.1007/s00132-017-3443-1 |
[15] | Mühlh?usser, J., Winkler, J., Babst, R., et al. (2017) Infected Tibia Defect Fractures Treated with the Masquelet Technique. Medicine, 96, e6948. https://doi.org/10.1097/MD.0000000000006948 |
[16] | Villemagne, T., Bonnard, C., Accadbled, F., et al. (2011) Intercalary Segmental Reconstruction of Long Bones after Malignant Bone Tumor Resection Using Primary Methyl Methacrylate Cement Spacer Interposition and Secondary Bone Grafting: The Induced Membrane Technique. Journal of Pediatric Orthopedics, 31, 570-576.
https://doi.org/10.1097/BPO.0b013e31821ffa82 |
[17] | Mansour, T. and Ghanem, I. (2017) Preliminary Results of the Induced Membrane Technique for the Reconstruction of Large Bone Defects. Journal of Pediatric Orthopedics, 37, e67-e74. https://doi.org/10.1097/BPO.0000000000000663 |
[18] | Ilizarov, G. (1989) The Tension-Stress Effect on the Genesis and Growth of Tissues. Part I. The Influence of Stability of Fixation and Soft-Tissue Preservation. Clinical Orthopaedics and Related Research, 238, 249-281.
https://doi.org/10.1097/00003086-198901000-00038 |
[19] | 蒋守海, 董长红, 周立国, 等. 应用Ilizarov技术修复胫骨长段骨髓炎骨缺损36例[J]. 中国矫形外科杂志, 2014, 22(18): 1699-1702. |
[20] | 钟甫华, 张春, 郭峭峰, 沈立锋, 等. Ilizarov骨搬移技术治疗下肢创伤后严重复杂感染长段骨缺损[J]. 浙江医学, 2019, 41(5): 449-452. |
[21] | Meselhy, M., Singer, M., Halawa, A., et al. (2018) Gradual Fibular Transfer by Ilizarov External Fixator in Post- Traumatic and Post-Infection Large Tibial Bone Defects. Archives of Orthopaedic and Trauma Surgery, 138, 653-660.
https://doi.org/10.1007/s00402-018-2895-z |
[22] | 夏天卫, 刘金柱, 施乐, 等. 组织工程技术在股骨头坏死治疗应用中的新理念[J]. 中国组织工程研究, 2020, 24(18): 2919-2925. |
[23] | Yu, X., Liu, S., Chen, X., et al. (2019) Cal-citonin Gene Related Peptide Gene-Modified Rat Bone Mesenchymal Stem Cells Are Effective Seed Cells in Tissue Engineering to Repair Skull Defects. Histology and Histopathology, 34, 1229-1241. |
[24] | Song, X., Shi, L., Chen, L., et al. (2017) Endothelial Cells Modified by Adenovirus Vector Containing Nine Copies Hypoxia Response Elements and Human Vascular Endothelial Growth Factor as the Novel Seed Cells for Bone Tissue Engineering. Acta Biochimica et Biophysica Sinica, 49, 973-978. https://doi.org/10.1093/abbs/gmx101 |
[25] | Wu, D., Wang, Z., Wang, J., et al. (2018) Development of a Micro-Tissue-Mediated Injectable Bone Tissue Engineering Strategy for Large Segmental Bone Defect Treatment. Stem Cell Research & Therapy, 9, 331.
https://doi.org/10.1186/s13287-018-1064-1 |
[26] | 张志翔, 徐恋祎. 基因治疗用于骨组织工程的研究进展[J]. 临床口腔医学杂志, 2020, 36(3): 180-184. |
[27] | Wang, X., Li, Y., Han, R., et al. (2014) Demineralized Bone Matrix Combined Bone Marrow Mesenchymal Stem Cells, Bone Morphogenetic Protein-2 and Transforming Growth Factor-β3 Gene Promoted Pig Cartilage Defect Repair. PLoS ONE, 9, e116061. https://doi.org/10.1371/journal.pone.0116061 |
[28] | Bakshi, R., Hokugo, A., Khalil, D., et al. (2020) A Chemotactic Functional Scaffold with VEGF-Releasing Peptide Amphiphiles Facilitates Bone Regeneration by BMP-2 in Large-Scale Rodent Cranial Defect Model. Plastic and Reconstructive Surgery, 147, 386-397. https://doi.org/10.1097/PRS.0000000000007551 |
[29] | Raina, D., Matuszewski, L., Vater, C., et al. (2020) A Facile One-Stage Treatment of Critical Bone Defects Using a Calcium Sulfate/Hydroxyapatite Biomaterial Providing Spa-tiotemporal Delivery of Bone Morphogenic Protein-2 and Zoledronic Acid. Science Advances, 6, eabc1779. https://doi.org/10.1126/sciadv.abc1779 |
[30] | Alluri, R., Song, X., Bougioukli, S., et al. (2019) Regional Gene Therapy with 3D Printed Scaffolds to Heal Critical Sized Bone Defects in a Rat Model. Journal of Biomedical Materials Research Part A, 107, 2174-2182.
https://doi.org/10.1002/jbm.a.36727 |
[31] | 魏晨旭, 何怡文, 王聃, 等. 组织工程学中骨修复材料的研究热点与进展[J]. 中国组织工程研究, 2020, 24(10): 1615-1621. |
[32] | Walker, M., Sharareh, B. and Mitchell, S. (2019) Masquelet Reconstruction for Posttraumatic Segmental Bone Defects in the Forearm. The Journal of Hand Surgery, 44, 342.e1-342.e8. https://doi.org/10.1016/j.jhsa.2018.07.003 |
[33] | Tong, K., Zhong, Z., Peng, Y., et al. (2017) Masquelet Technique versus Ilizarov Bone Transport for Reconstruction of Lower Extremity Bone Defects Following Posttraumatic Osteomyelitis. Injury, 48, 1616-1622.
https://doi.org/10.1016/j.injury.2017.03.042 |