全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

CAR-T疗法在胃癌中的研究进展
Progress of CAR-T Therapy in Gastric Cancer

DOI: 10.12677/ACM.2022.124361, PP. 2500-2509

Keywords: 嵌合抗原受体T细胞,胃癌,免疫治疗
Chimeric Antigen Receptor T Cell
, Gastric Cacer, Immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

继嵌合抗原受体T细胞(chimeric antigen receptor T cell, CAR-T)免疫疗法在血液系统肿瘤中取得显著成效之后,CAR-T疗法用于实体瘤亦逐渐成为研究热点。胃癌(GC)是最常见的消化道恶性肿瘤之一,是全球第三大癌症相关死亡原因。对于缺乏手术适应症及放疗、化疗效果不好的患者,迫切需要寻找新颖而高效的治疗方式。CAR-T疗法在胃癌的治疗中已取得一些成果,不过也存在一些需要克服的障碍。本文综述了CAR-T疗法在胃癌中的治疗现状及面临的挑战。
Since chimeric antigen receptor T-cell (CAR-T) immunotherapy has achieved remarkable results in hematological tumors, CAR-T therapy has gradually become a hot topic in solid tumors. Gastric cancer is one of the most common types of cancer and the third leading cause of cancer-related death overall. It is urgent to find novel and efficient treatment methods for patients who lack surgical indications or those who with poor radiotherapy and chemotherapy outcomes. CAR-T therapy has made some achievements in the treatment of gastric cancer, but there are still some obstacles to overcome. This paper reviews the current status and challenges in CAR-T therapy for gastric cancer.

References

[1]  Ramos, C.A. and Dotti, G. (2011) Chimeric Antigen Receptor (CAR)-Engineered Lymphocytes for Cancer Therapy. Expert Opinion on Biological Therapy, 11, 855-873.
https://doi.org/10.1517/14712598.2011.573476
[2]  Jackson, H.J., Rafiq, S. and Brentjens, R.J. (2016) Driving CAR T-Cells Forward. Nature Reviews Clinical Oncology, 13, 370-383.
https://doi.org/10.1038/nrclinonc.2016.36
[3]  Till, B.G., Jensen, M.C., Wang, J., et al. (2012) CD20-Specific Adoptive Immunotherapy for Lymphoma Using a Chimeric Antigen Receptor with both CD28 and 4-1BB Domains: Pilot Clinical Trial Results. Blood, 119, 3940-3950.
https://doi.org/10.1182/blood-2011-10-387969
[4]  Porter, D.L., Levine, B.L., Kalos, M., et al. (2011) Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia. The New England Journal of Medicine, 365, 725-733.
https://doi.org/10.1056/NEJMoa1103849
[5]  Jensen, M.C. and Riddell, S.R. (2015) Designing Chimeric Antigen Receptors to Effectively and Safely Target Tumors. Current Opinion in Immunology, 33, 9-15.
https://doi.org/10.1016/j.coi.2015.01.002
[6]  Mcadam, A.J., Greenwald, R.J., Levin, M.A., et al. (2001) ICOS Is Critical for CD40-Mediated Antibody Class Switching. Nature, 409, 102-105.
https://doi.org/10.1038/35051107
[7]  Lipowska-Bhalla, G., Gilham, D.E., Hawkins, R.E., et al. (2012) Targeted Immunotherapy of Cancer with CAR T Cells: Achievements and Challenges. Cancer Immunology, Immunotherapy, 61, 953-962.
https://doi.org/10.1007/s00262-012-1254-0
[8]  Haynes, N.M., Trapani, J.A., Teng, M.W., et al. (2002) Single-Chain Antigen Recognition Receptors That Costimulate Potent Rejection of Established Experimental Tumors. Blood, 100, 3155-3163.
https://doi.org/10.1182/blood-2002-04-1041
[9]  Wu, J., Song, Y. and Bakker, A. (1999) An Activating Immunoreceptor Complex Formed by NKG2D and DAP10. Science, 285, 730-731.
https://doi.org/10.1126/science.285.5428.730
[10]  Pule, M.A., Straathof, K.C., Dotti, G., et al. (2005) A Chimeric T Cell Antigen Receptor That Augments Cytokine Release and Supports Clonal Expansion of Primary Human T Cells. Molecular Therapy, 5, 933-941.
https://doi.org/10.1016/j.ymthe.2005.04.016
[11]  Kochenderfer, J.N. and Rosenberg, S.A. (2013) Treating B-Cell Cancer with T Cells Expressing Anti-CD19 Chimeric Antigen Receptors. Nature Reviews Clinical Oncology, 10, 267-276.
https://doi.org/10.1038/nrclinonc.2013.46
[12]  Catenacci, D.V., Ang, A., Liao, W.L., et al. (2017) MET Tyrosine Kinase Receptor Expression and Amplification as Prognostic Biomarkers of Survival in Gastroesophageal Adenocarcinoma. Cancer, 123, 1061-1070.
https://doi.org/10.1002/cncr.30437
[13]  Fuse, N., Kuboki, Y., Kuwata, T., et al. (2016) Prognostic Impact of HER2, EGFR, and c-MET Status on Overall Survival of Advanced Gastric Cancer Patients. Gastric Cancer, 19, 183-191.
https://doi.org/10.1007/s10120-015-0471-6
[14]  Zhi, P., Yan, Z., Wang, Q., et al. (2014) Prognostic Significance of MET Amplification and Expression in Gastric Cancer: A Systematic Review with Meta-Analysis. PLoS ONE, 9, e84502.
https://doi.org/10.1371/journal.pone.0084502
[15]  Catenacci, D., Tebbutt, N.C., Davidenko, I., et al. (2017) Rilotumumab plus Epirubicin, Cisplatin, and Capecitabine as First-Line Therapy in Advanced MET-Positive Gastric or Gastro-Oesophageal Junction Cancer (RILOMET-1): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 18, 1467-1482.
https://doi.org/10.1016/S1470-2045(17)30566-1
[16]  Shah, M.A., Bang, Y.J., Lordick, F., et al. (2017) Effect of Fluorouracil, Leucovorin, and Oxaliplatin with or without Onartuzumab in HER2-Negative, MET-Positive Gastroesophageal Adenocarcinoma: The METGastric Randomized Clinical Trial. JAMA Oncology, 3, 620-627.
https://doi.org/10.1001/jamaoncol.2016.5580
[17]  Liu, X.J., et al. (2016) A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Research, 76, 1578-1590.
https://doi.org/10.1158/0008-5472.CAN-15-2524
[18]  Ankri, C., Shamalov, K., Horovitz-Fried, M., et al. (2013) Human T Cells Engineered to Express a Programmed Death 1/28 Costimulatory Retargeting Molecule Display Enhanced Antitumor Activity. Journal of Immunology, 191, 4121-4129.
https://doi.org/10.4049/jimmunol.1203085
[19]  Chen, C., Gu, Y.M., Zhang, F., et al. (2021) Construction of PD1/CD28 Chimeric-Switch Receptor Enhances Anti-Tumor Ability of c-Met CAR-T in Gastric Cancer. Oncoimmunology, 10, Article ID: 1901434.
https://doi.org/10.1080/2162402X.2021.1901434
[20]  Lin, H., Zhang, H., Wang, J., et al. (2014) A Novel Human Fab Antibody for Trop2 Inhibits Breast Cancer Growth in Vitro and in Vivo. International Journal of Cancer, 134, 1239-1249.
https://doi.org/10.1002/ijc.28451
[21]  Shvartsur, A. and Bonavida, B. (2015) Trop2 and Its Overexpression in Cancers: Regulation and Clinical/Therapeutic Implications. Genes Cancer, 6, 84-105.
https://doi.org/10.18632/genesandcancer.40
[22]  Wang, H., Liu, Q., Tang, X., et al. (2014) Eukaryotic Expression of Human Anti-TROP2 Antibody IgG and Its Inhibitory Effect on Cell Proliferation of Pancreatic Cancer. Journal of Nanjing Medical University (Natural Sciences), 41, 269-277.
[23]  Zhao, W., Zhu, H., Zhang, S., et al. (2016) Trop2 Is Overexpressed in Gastric Cancer and Predicts Poor Prognosis. Oncotarget, 7, 6136-6144.
https://doi.org/10.18632/oncotarget.6733
[24]  Weinstock, M. and Mcdermott, D. (2015) Targeting PD-1/PD-L1 in the Treatment of Metastatic Renal Cell Carcinoma. Therapeutic Advances in Urology, 7, 365-377.
https://doi.org/10.1177/1756287215597647
[25]  Singer, M., Wang, C., Cong, L., et al. (2017) A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell, 171, 1221-1223.
https://doi.org/10.1016/j.cell.2017.11.006
[26]  Ivashko, I.N. and Kolesar, J.M. (2016) Pembrolizumab and Nivolumab: PD-1 Inhibitors for Advanced Melanoma. American Journal of Health-System Pharmacy, 73, 193-201.
https://doi.org/10.2146/ajhp140768
[27]  Zhao, W., Jia, L., Zhang, M., et al. (2019) The Killing Effect of Novel Bi-Specific Trop2/PD-L1 CAR-T Cell Targeted Gastric Cancer. The American Journal of Cancer Research, 9, 1846-1856.
[28]  Saeki, N., Gu, J., Yoshida, T., et al. (2010) Prostate Stem Cell Antigen: A Jekyll and Hyde Molecule? Clinical Cancer Research, 16, 3533-3538.
https://doi.org/10.1158/1078-0432.CCR-09-3169
[29]  Wu, D., Lv, J., Zhao, R., et al. (2020) PSCA Is a Target of Chimeric Antigen Receptor T Cells in Gastric Cancer. Biomarker Research, 8, 3.
https://doi.org/10.1186/s40364-020-0183-x
[30]  Ziprin, P., Ridgway, P.F., Pfistermuller, K.L., et al. (2003) ICAM-1 Mediated Tumor-Mesothelial Cell Adhesion Is Modulated by IL-6 and TNF-Alpha: A Potential Mechanism by Which Surgical Trauma Increases Peritoneal Metastases. Cell Communication & Adhesion, 10, 141-154.
https://doi.org/10.1080/15419060390262561
[31]  Jung, W.C., Jang, Y.J., Kim, J.H., et al. (2012) Expression of Intercellular Adhesion Molecule-1 and e-Selectin in Gastric Cancer and Their Clinical Significance. Journal of Gastric Cancer, 12, 140-148.
https://doi.org/10.5230/jgc.2012.12.3.140
[32]  Jung, M., Yang, Y., Mccloskey, J.E., et al. (2020) Chimeric Antigen Receptor T Cell Therapy Targeting ICAM-1 in Gastric Cancer. Molecular Therapy—Oncolytics, 18, 587-601.
https://doi.org/10.1016/j.omto.2020.08.009
[33]  Chang, K. and Pastan, I. (1996) Molecular Cloning of Mesothelin, a Differentiation Antigen Present on Mesothelium, Mesotheliomas, and Ovarian Cancers. Proceedings of the National Academy of Sciences of the United States of America, 93, 136-140.
https://doi.org/10.1073/pnas.93.1.136
[34]  Ito, T., Kajino, K., Abe, M., et al. (2014) ERC/Mesothelin Is Expressed in Human Gastric Cancer Tissues and Cell Lines. Oncology Reports, 31, 27-33.
https://doi.org/10.3892/or.2013.2803
[35]  Sotoudeh, M., Shirvani, S.I., Merat, S., et al. (2019) MSLN (Mesothelin), ANTXR1 (TEM8), and MUC3A Are the Potent Antigenic Targets for CAR T Cell Therapy of Gastric Adenocarcinoma. Journal of Cellular Biochemistry, 120, 5010-5017.
https://doi.org/10.1002/jcb.27776
[36]  Lv, J., Zhao, R., Wu, D., et al. (2019) Mesothelin Is a Target of Chimeric Antigen Receptor T Cells for Treating Gastric Cancer. Journal of Hematology & Oncology, 12, 18.
https://doi.org/10.1186/s13045-019-0704-y
[37]  Niimi, T., Nagashima, K., Ward, J.M., et al. (2001) Claudin-18, a Novel Downstream Target Gene for the T/EBP/ NKX2.1 Homeodomain Transcription Factor, Encodes Lung- and Stomach-Specific Isoforms through Alternative Splicing. Molecular and Cellular Biology, 21, 7380-7390.
https://doi.org/10.1128/MCB.21.21.7380-7390.2001
[38]  Vergote, I.B., Marth, C. and Coleman, R.L. (2015) Role of the Folate Receptor in Ovarian Cancer Treatment: Evidence, Mechanism, and Clinical Implications. Cancer and Metastasis Reviews, 34, 41-52.
https://doi.org/10.1007/s10555-014-9539-8
[39]  Jiang, H., Shi, Z., Wang, P., et al. (2019) Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. Journal of the National Cancer Institute, 111, 409-418.
https://doi.org/10.1093/jnci/djy134
[40]  Elnakat, H. and Ratnam, M. (2006) Role of Folate Receptor Genes in Reproduction and Related Cancers. Frontiers in Bioscience, 11, 506-519.
https://doi.org/10.2741/1815
[41]  Kim, M., Pyo, S., Kang, C.H., et al. (2018) Folate Receptor 1 (FOLR1) Targeted Chimeric Antigen Receptor (CAR) T Cells for the Treatment of Gastric Cancer. PLoS ONE, 13, e198347.
https://doi.org/10.1371/journal.pone.0198347
[42]  Han, H., Wang, S., Hu, Y., et al. (2018) Monoclonal Antibody 3H11 Chimeric Antigen Receptors Enhance T Cell Effector Function and Exhibit Efficacy against Gastric Cancer. Oncology Letters, 15, 6887-6894.
https://doi.org/10.3892/ol.2018.8255
[43]  Pang, Y., Hou, X., Yang, C., et al. (2018) Advances on Chimeric Antigen Receptor-Modified T-Cell Therapy for Oncotherapy. Molecular Cancer, 17, 91.
https://doi.org/10.1186/s12943-018-0840-y
[44]  Lu, P., Qiu, S., Pan, Y., et al. (2021) Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biotherapy and Radiopharmaceuticals, 36, 307-315.
https://doi.org/10.1089/cbr.2020.4089
[45]  Majzner, R.G. and Mackall, C.L. (2018) Tumor Antigen Escape from CAR T-Cell Therapy. Cancer Discovery, 8, 1219-1226.
https://doi.org/10.1158/2159-8290.CD-18-0442
[46]  Viapiano, M., Bhat, K., Abounader, R., et al. (2017) A Single Dose of Peripherally Infused EGFRvIII-Directed CAR T Cells Mediates Antigen Loss and Induces Adaptive Resistance in Patients with Recurrent Glioblastoma. NeuroOncology, 19, 1574-1575.
[47]  Li, J., Li, W., Huang, K., et al. (2018) Chimeric Antigen Receptor T Cell (CAR-T) Immunotherapy for Solid Tumors: Lessons Learned and Strategies for Moving Forward. Journal of Hematology & Oncology, 11, 22.
https://doi.org/10.1186/s13045-018-0568-6
[48]  Inaguma, Y., Akahori, Y., Murayama, Y., et al. (2014) Construction and Molecular Characterization of a T-Cell Receptor-Like Antibody and CAR-T Cells Specific for Minor Histocompatibility Antigen HA-1H. Gene Therapy, 21, 575-584.
https://doi.org/10.1038/gt.2014.30
[49]  Ireland, L., Santos, A., Ahmed, M.S., et al. (2016) Chemoresistance in Pancreatic Cancer Is Driven by Stroma-Derived Insulin-Like Growth Factors. Cancer Research, 76, 6851-6863.
https://doi.org/10.1158/0008-5472.CAN-16-1201
[50]  Magee, M.S., Kraft, C.L., Abraham, T.S., et al. (2016) GUCY2C-Directed CAR-T Cells Oppose Colorectal Cancer Metastases without Autoimmunity. Oncoimmunology, 5, e1227897.
https://doi.org/10.1080/2162402X.2016.1227897
[51]  Caruana, I., Savoldo, B., Hoyos, V., et al. (2015) Heparanase Promotes Tumor Infiltration and Antitumor Activity of CAR-Redirected T Lymphocytes. Nature Medicine, 21, 524-529.
https://doi.org/10.1038/nm.3833
[52]  Ma, X., Shou, P., Smith, C., et al. (2020) Interleukin-23 Engineering Improves CAR T Cell Function in Solid Tumors. Nature Biotechnology, 38, 448-459.
https://doi.org/10.1038/s41587-019-0398-2
[53]  Rafiq, S., Yeku, O.O., Jackson, H.J., et al. (2018) Targeted Delivery of a PD-1-Blocking scFv by CAR-T Cells Enhances Anti-Tumor Efficacy in Vivo. Nature Biotechnology, 36, 847-856.
https://doi.org/10.1038/nbt.4195
[54]  Coon, M.E., Stephan, S.B., Gupta, V., et al. (2020) Nitinol Thin Films Functionalized with CAR-T Cells for the Treatment of Solid Tumours. Nature Biomedical Engineering, 4, 195-206.
https://doi.org/10.1038/s41551-019-0486-0
[55]  Cho, J.H., Collins, J.J. and Wong, W.W. (2018) Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell, 173, 1426-1438.
https://doi.org/10.1016/j.cell.2018.03.038
[56]  Ingram, J.R., Schmidt, F.I. and Ploegh, H.L. (2018) Exploiting Nanobodies’ Singular Traits. Annual Review of Immunology, 36, 695-715.
https://doi.org/10.1146/annurev-immunol-042617-053327
[57]  Xie, Y.J., Dougan, M., Jailkhani, N., et al. (2019) Nanobody-Based CAR T Cells That Target the Tumor Microenvironment Inhibit the Growth of Solid Tumors in Immunocompetent Mice. Proceedings of the National Academy of Sciences, 116, 7624-7631.
https://doi.org/10.1073/pnas.1817147116

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133