|
人脐带间充质干细胞来源的外泌体在皮肤老化方面的作用
|
Abstract:
干细胞治疗是修复衰老受损组织、恢复皮肤弹性活力的一种安全、实用、有效的治疗来源。先前的实验证明,间充质干细胞来源的外泌体对皮肤衰老有治疗作用,在一定程度上为管理皮肤和面部皮肤老化提供了一种有前途和有效的替代方案,但近年来发现人脐带间充质干细胞源性外泌体(Human umbilicai cord mesenchymal stem cells-exosome, HUCMSCs-ex)在缓解皮肤衰老方面表现出巨大的治疗潜力,这也成为医学美容领域研究的热点问题。本文现就人脐带间充质干细胞来源的外泌体功能特性及其在治疗皮肤老化中的研究机制方面作一综述,提出目前所面临的临床问题,并对其未来的临床应用进行了展望。
Stem cell therapy is a safe, practical and effective treatment source for repairing aging damaged tissues and restoring skin elasticity. Previous experiments have demonstrated that exosomes derived from mesenchymal stem cells have therapeutic effects on skin aging, providing a promising and effective alternative for managing skin and facial skin aging to a certain extent. However, in recent years, human umbilicai cord mesenchymal stem cells-exosome (HUCMSCs-ex) has been found to show great therapeutic potential in alleviating skin aging, which has become a hot topic in the field of medical cosmetology research. In this review, the functional characteristics of exosomes derived from human umbilical cord mesenchymal stem cells and their mechanisms in the treatment of skin aging are reviewed, the current clinical problems are put forward, and the future clinical applications of exosomes are prospected.
[1] | Farage, M.A., Miller, K.W., Elsner, P. and Maibach, H.I. (2012) Characteristics of the Aging Skin. Advances in Wound Care, 2, 5-10. https://doi.org/10.1089/wound.2011.0356 |
[2] | Farage, M.A., Miller, K.W., Elsner, P. and Maibach, H.I. (2008) Intrinsic and Extrinsic Factors in Skin Ageing: A Review. International Journal of Cosmetic Science, 30, 87-95. https://doi.org/10.1111/j.1468-2494.2007.00415.x |
[3] | Qiao, C., Xu, W., Zhu, W., Hu, J., Qian, H., Yin, Q., et al. (2008) Human Mesenchymal Stem Cells Isolated from the Umbilical Cord. Cell Biology International, 32, 8-15. https://doi.org/10.1016/j.cellbi.2007.08.002 |
[4] | Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., et al. (1999) Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science, 284, 143-147. https://doi.org/10.1126/science.284.5411.143 |
[5] | Deans, R.J. and Moseley, A.B. (2000) Mesenchymal Stem Cells: Biology and Potential Clinical Uses. Experimental Hematology, 28, 875-884. https://doi.org/10.1016/S0301-472X(00)00482-3 |
[6] | Rao, M.S. and Mattson, M.P. (2001) Stem Cells and Aging: Expanding the Possibilities. Mechanisms of Ageing and Development, 122, 713-734. https://doi.org/10.1016/S0047-6374(01)00224-X |
[7] | Fan, C., Zhang, Q. and Zhou, J. (2011) Therapeutic Potentials of Mesenchymal Stem Cells Derived from Human Umbilical Cord. Stem Cell Reviews and Reports, 7, 195-207. https://doi.org/10.1007/s12015-010-9168-8 |
[8] | Hsu, Y., Li, L. and Fuchs, E. (2014) Emerging Interactions between skin Stem Cells and Their Niches. Nature Medicine, 20, 847-856. https://doi.org/10.1038/nm.3643 |
[9] | Grinnell, F. (2003) Fibroblast Biology in Three-Dimensional Collagen Matrices. Trends in Cell Biology, 13, 264-269. https://doi.org/10.1016/S0962-8924(03)00057-6 |
[10] | Rittié, L. and Fisher, G.J. (2015) Natural and Sun-Induced Aging of Human Skin. Cold Spring Harbor Perspectives in Medicine, 5, Article ID: a15370. https://doi.org/10.1101/cshperspect.a015370 |
[11] | 赵庆华, 祝加学, 王雷, 董双海, 夏天, 田纪伟. 人脐带间充质干细胞的生物学特性及向软骨细胞、骨细胞分化实验研究[J]. 中华医学杂志, 2011, 91(5): 317-321. |
[12] | Ding, D., Chang, Y., Shyu, W. and Lin, S.-Z. (2015) Human Umbilical Cord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy. Cell Transplantation, 24, 339-347. https://doi.org/10.3727/096368915X686841 |
[13] | 王雨涵, 程福, 蒋汶学, 黄远帅. 人脐带间充质干细胞来源外泌体的提取与鉴定[J]. 中国社区医师, 2020, 36(34): 4-5. |
[14] | Wang, Z., He, Z., Liang, S., Yang, Q., Cheng, P. and Chen, A. (2020) Comprehensive Proteomic Analysis of Exosomes Derived from Human Bone Marrow, Adipose Tissue, and Umbilical Cord Mesenchymal Stem Cells. Research Square. https://doi.org/10.21203/rs.3.rs-83181/v1 |
[15] | Pan, B. and Johnstone, R.M. (1983) Fate of the Transferrin Receptor during Maturation of Sheep Reticulocytes in Vitro: Selective Externalization of the Receptor. Cell, 33, 967-978. https://doi.org/10.1016/0092-8674(83)90040-5 |
[16] | Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L. and Turbide, C. (1987) Vesicle Formation during Reticulocyte Maturation. Association of Plasma Membrane Activities with Released Vesicles (Exosomes). Journal of Biological Chemistry, 262, 9412-9420. https://doi.org/10.1016/S0021-9258(18)48095-7 |
[17] | Raposo, G., Nijman, H.W., Stoorvogel, W., Liejendekker, R., Harding, C.V., Melief, C.J., et al. (1996) B Lymphocytes Secrete Antigen-Presenting Vesicles. Journal of Experimental Medicine, 183, 1161-1172.
https://doi.org/10.1084/jem.183.3.1161 |
[18] | Théry, C., Zitvogel, L. and Amigorena, S. (2002) Amigorena, S. Exosomes: Composition, Biogenesis and Function. Nature Reviews Immunology, 2, 569-579. https://doi.org/10.1038/nri855 |
[19] | Vella, L.J., Sharples, R.A., Lawson, V.A., Masters, C., Cappai, R. and Hill, A. (2007) Packaging of Prions into Exosomes Is Associated with a Novel Pathway of PrP Processing. The Journal of Pathology, 211, 582-590.
https://doi.org/10.1002/path.2145 |
[20] | Admyre, C., Johansson, S.M., Qazi, K.R., Filén, J.-J., Lahesmaa, R., Norman, M., et al. (2007) Exosomes with Immune Modulatory Features Are Present in Human Breast Milk. The Journal of Immunology, 179, 1969-1978.
https://doi.org/10.4049/jimmunol.179.3.1969 |
[21] | Caby, M., Lankar, D., Vincendeau-Scherrer, C., Raposo, G. and Bonnerot, C. (2005) Exosomal-Like Vesicles Are Present in Human Blood Plasma. International Immunology, 17, 879-887. https://doi.org/10.1093/intimm/dxh267 |
[22] | Ronquist, G. and Brody, I. (1985) The Prostasome: Its Secretion and Function in Man. Biochimica et Biophysica Acta (BBA): Reviews on Biomembranes, 822, 203-218. https://doi.org/10.1016/0304-4157(85)90008-5 |
[23] | Pisitkun, T., Shen, R. and Knepper, M.A. (2004) Identification and Proteomic Profiling of Exosomes in Human Urine. Proceedings of the National Academy of Sciences of the United States of America, 101, 13368-13373.
https://doi.org/10.1073/pnas.0403453101 |
[24] | Andre, F., Schartz, N.E., Movassagh, M., Flament, C., Pautier, P., Morice, P., et al. (2002) Malignant Effusions and Immunogenic Tumour-Derived Exosomes. The Lancet, 360, 295-305. https://doi.org/10.1016/S0140-6736(02)09552-1 |
[25] | Zhou, J., Benito-Martin, A., Mighty, J., Chang, L., Ghoroghi, S., Wu, H., et al. (2018) Retinal Progenitor Cells Release Extracellular Vesicles Containing Developmental Transcription Factors, MicroRNA and Membrane Proteins. Scientific Reports, 8, Article No. 2823. https://doi.org/10.1038/s41598-018-20421-1 |
[26] | Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., et al. (2015) HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells, 33, 2158-2168. https://doi.org/10.1002/stem.1771 |
[27] | Phinney, D.G. and Pittenger, M.F. (2017) Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells, 35, 851-858. https://doi.org/10.1002/stem.2575 |
[28] | 韩新烨. 人脐带间充质干细胞源外泌体在糖尿病溃疡创面修复中的作用及机制[D]: [硕士学位论文]. 镇江: 江苏大学, 2020. |
[29] | Zhou, Y., Xu, H., Xu, W., Wang, B., Wu, H., Tao, Y., et al. (2013) Exosomes Released by Human Umbilical Cord Mesenchymal Stem Cells Protect against Cisplatin-Induced Renal Oxidative Stress and Apoptosis in Vivo and in Vitro. Stem Cell Research & Therapy, 4, Article No. 34. https://doi.org/10.1186/scrt194 |
[30] | Jia, H., Liu, W., Zhang, B., Wang, J., Wu, P., Tandra, N., et al. (2018) HucMSC Exosomes-Delivered 14-3-3ζ Enhanced Autophagy via Modulation of ATG16L in Preventing Cisplatin-Induced Acute Kidney Injury. American Journal of Translational Research, 10, 101-113. |
[31] | Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., et al. (2015) Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis through the Wnt4/β-Catenin Pathway. Stem Cells Translational Medicine, 4, 513-522. https://doi.org/10.5966/sctm.2014-0267 |
[32] | Li, T., Yan, Y., Wang, B., Qian, H., Zhang, X., Shen, L., et al. (2012) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Alleviate Liver Fibrosis. Stem Cells and Development, 22, 845-854.
https://doi.org/10.1089/scd.2012.0395 |
[33] | Ayuzawa, R., Doi, C., Rachakatla, R.S., Pyle, M.M., Maurya, D.K., Troyer, D., et al. (2009) Na?ve Human Umbilical Cord Matrix Derived Stem Cells Significantly Attenuate Growth of Human Breast Cancer Cells in Vitro and in Vivo. Cancer Letters, 280, 31-37. https://doi.org/10.1016/j.canlet.2009.02.011 |
[34] | Yan, Y., Jiang, W., Tan, Y., Zou, S., Zhang, H., Mao, F., et al. (2017) HucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury. Molecular Therapy, 25, 465-479.
https://doi.org/10.1016/j.ymthe.2016.11.019 |
[35] | 秦锋, 张文超, 张明子, 俞楠泽, 龙笑, 王晓军. 脂肪来源间充质干细胞治疗皮肤老化的研究进展[J]. 中国美容整形外科杂志, 2020, 31(4): 244-246+253. |
[36] | 胡煜. NRIP1调控脂肪间充质干细胞功能在延缓皮肤衰老中作用的初步研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2020. |
[37] | Musia?-Wysocka, A., Kot, M., Su?kowski, M., Badyra, B. and Majka, M. (2019) Molecular and Functional Verification of Wharton’s Jelly Mesenchymal Stem Cells (WJ-MSCs). Pluripotency: International Journal of Molecular Sciences, 20, Article No. 1807. https://doi.org/10.3390/ijms20081807 |
[38] | Fong, C., Chak, L., Biswas, A., Tan, J.H., Gauthaman, K., Chan, W.K., et al. (2011) Human Wharton’s Jelly Stem Cells Have Unique Transcriptome Profiles Compared to Human Embryonic Stem Cells and Other Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 7, 1-16. https://doi.org/10.1007/s12015-010-9166-x |
[39] | 张娟, 史晋叔, 李剑. 间充质干细胞源性外泌体——未来生物疗法的理想载体[J]. 中国实验血液学杂志, 2015, 23(4): 1179-1183. |
[40] | Wang, L., Abhange, K.K., Wen, Y., Chen, Y., Xue, F., Wang, G., et al. (2019) Preparation of Engineered Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells with Ultrasonication for Skin Rejuvenation. ACS Omega, 4, 22638-22645. https://doi.org/10.1021/acsomega.9b03561 |
[41] | Liu, S., Meng, M., Han, S., Gao, H., Zhao, Y.Y., Yang, Y., et al. (2021) Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Ameliorate HaCaT Cell Photo-Aging. Rejuvenation Research, 24, 283-293.
https://doi.org/10.1089/rej.2020.2313 |
[42] | Wu, P., Zhang, B., Han, X., Sun, Y., Sun, Z., Li, L., et al. (2021) HucMSC Exosome-Delivered 14-3-3ζ Alleviates Ultraviolet Radiation-Induced Photodamage via SIRT1 Pathway Modulation. Aging, 13, 11542-11563.
https://doi.org/10.18632/aging.202851 |
[43] | Wang, Y., Han, Z., Ma, J., Zuo, C., Geng, J., Gong, W., et al. (2011) A Toxicity Study of Multiple-Administration Human Umbilical Cord Mesenchymal Stem Cells in Cynomolgus Monkeys. Stem Cells and Development, 21, 1401-1408. https://doi.org/10.1089/scd.2011.0441 |