|
Pin1与膀胱癌发生的相关性
|
Abstract:
Pin1是一种肽基–脯氨酰顺式/反式异构酶,属于PPIase家族,可特异性催化有丝分裂磷蛋白中磷酸丝氨酸–脯氨酸或苏氨酸–脯氨酸的酰胺键异构化,诱导其相互作用蛋白质的构象和功能变化。通过脯氨酰异构化,Pin1微调了关键磷蛋白的功能,影响了细胞生长周期调节、免疫反应、生殖细胞发育、神经元分化和存活以及癌症发生。已发现Pin1在许多癌症中过度表达。我们还通过分析Pin1参与Ras突变、Notch1通路和NF-KB通路等相互作用来检查Pin1在膀胱癌发生中的作用。本文主要就Pin1结构及功能进行简单介绍,对Pin1不同系统肿瘤中的表达及调控作用进行总结。最后,探索和讨论了Pin1与膀胱癌的相关性及其作用机制,为膀胱癌的治疗提供新思路、新靶点。
Pin1 peptide is a kind of base-preserved ammonia acyl cis/trans isomerase, belongs to the PPIase family, can specifically catalyze the isomerization of phosphoserine-proline or threonine-proline amide bonds in mitotic phosphoproteins, and induces conformational and functional changes in the interacting proteins. Through prolyl isomerization, Pin1 fine-tuned the function of key phosphoproteins, affecting cell growth cycle regulation, immune response, germ cell development, neuronal differentiation and survival, and carcinogenesis. Pin1 has been found to be overexpressed in many cancers. We also examined the role of Pin1 in bladder cancer development by analyzing the interactions of Pin1 in RAS mutation, Notch1 pathway, and NF-KB pathway. In this paper, the structure and function of Pin1 were briefly introduced, and the expression and regulation of Pin1 in different tumor systems were summarized. Finally, the correlation between Pin1 and bladder cancer and its mechanism of action were explored and discussed, providing new ideas and new targets for the treatment of bladder cancer.
[1] | 刘宗超, 李哲轩, 张阳, 周彤, 张婧莹, 游伟程, 潘凯枫, 李文庆. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13. |
[2] | Jacobs, B.L., Lee, C.T. and Montie, J.E. (2010) Bladder Cancer in 2010: How Far Have We Come? CA: A Cancer Journal for Clinicians, 60, 244-272. https://doi.org/10.3322/caac.20077 |
[3] | Thomsen, M.B., Nordentoft, I., Lamy, P., H?yer, S., Vang, S., Hedegaard, J., Borre, M., Jensen, J.B., ?rntoft, T.F. and Dyrskj?t, L. (2016) Spatial and Temporal Clonal Evolution during Development of Metastatic Urothelial Carcinoma. Molecular Oncology, 10, 1450-1460. https://doi.org/10.1016/j.molonc.2016.08.003 |
[4] | 那彦群, 叶章群, 孙颖浩. 中国泌尿外科疾病诊断治疗指南[M]. 北京: 人民卫生出版社, 2013: 21-28. |
[5] | Davey, M.G., Hynes, S.O., Kerin, M.J., Miller, N. and Lowery, A.J. (2021) Ki-67 as a Prognostic Biomarker in Invasive Breast Cancer. Cancers, 13, Article No. 4455. https://doi.org/10.3390/cancers13174455 |
[6] | Boegemann, M. and Krabbe, L.M. (2020) Prognostic Implications of Immunohistochemical Biomarkers in Non-Muscle-Invasive Blad Cancer and Muscle-Invasive Bladder Cancer. Mini-Reviews in Medicinal Chemistry, 20, 1133-1152. https://doi.org/10.2174/1389557516666160512151202 |
[7] | Shinohara, N. and Koyanagi, T. (2002) Ras Signal Transduction in Carcinogenesis and Progression of Bladder Cancer: Molecular Target for Treatment? Urological Research, 30, 273-281. https://doi.org/10.1007/s00240-002-0275-0 |
[8] | 曹明晓, 姜立新. 肽脯氨酰基顺反异构酶Pin1:恶性肿瘤形成的催化剂[J]. 中华普通外科学文献(电子版), 2016, 10(2): 150-153. |
[9] | Lu, K.P. (2004) Pinning Down Cell Signaling, Cancer and Alzheimer’s Disease. Trends in Biochemical Sciences, 29, 200-209. https://doi.org/10.1016/j.tibs.2004.02.002 |
[10] | 陈杨. PIN1在胃癌中高表达的机制及其在胃癌侵袭转移中的作用研究[D]: [硕士学位论文]. 重庆: 西南大学, 2020. |
[11] | Yaffe, M.B., Schutkowski, M., Shen, M., Zhou, X.Z., Stukenberg, P.T., Rahfeld, J.U., Xu, J., Kuang, J., Kirschner, M.W., Fischer, G., Cantley, L.C. and Lu, K.P. (1997) Sequence-Specific and Phosphorylation-Dependent Proline Isomerization: A Potential Mitotic Regulatory Mechanism. Science, 278, 1957-1960.
https://doi.org/10.1126/science.278.5345.1957 |
[12] | Liou, Y.C., Zhou, X.Z. and Lu, K.P. (2011) Prolyl Isomerase Pin1 as a Molecular Switch to Determine the Fate of Phosphoproteins. Trends in Biochemical Sciences, 36, 501-514. https://doi.org/10.1016/j.tibs.2011.07.001 |
[13] | Lu, K.P., Liou, Y.C. and Zhou, X.Z. (2002) Pinning down Proline-Directed Phosphorylation Signaling. Trends in Cell Biology, 12, 164-172. https://doi.org/10.1016/S0962-8924(02)02253-5 |
[14] | Lu, K.P. and Zhou, X.Z. (2007) The Prolyl Isomerase PIN1: A Pivotal New Twist in Phosphorylation Signalling and Disease. Nature Reviews Molecular Cell Biology, 8, 904-916. https://doi.org/10.1038/nrm2261 |
[15] | 董瑞杰, 笪宇蓉. 脯氨酰顺反异构酶Pin1和免疫炎症[J]. 天津医科大学学报,2021, 27(4): 431-434. |
[16] | Lu, K.P., Hanes, S.D. and Hunter, T. (1996) A Human Peptidyl-Prolyl Isomerase Essential for Regulation of Mitosis. Nature, 380, 544-547. https://doi.org/10.1038/380544a0 |
[17] | Lin, M.C., Lin, J.J., Hsu, C.L., Juan, H.F., Lou, P.J. and Huang, M.C. (2017) GATA3 Interacts with and Stabilizes HIF-1α to Enhance Cancer Cell Invasiveness. Oncogene, 36, 4243-4252. https://doi.org/10.1038/onc.2017.8 |
[18] | Matena, A., Rehic, E., H?nig, D., Kamba, B. and Bayer, P. (2018) Structure and Function of the Human Parvulins Pin1 and Par14/17. Biological Chemistry, 399, 101-125. https://doi.org/10.1515/hsz-2017-0137 |
[19] | Lee, Y.M. and Liou, Y.C. (2018) Gears-In-Motion: The Interplay of WW. and PPIase Domains in Pin1. Frontiers in Oncology, 8, Article No. 469. https://doi.org/10.3389/fonc.2018.00469 |
[20] | Bao, L., Kimzey, A., Sauter, G., Sowadski, J.M., Lu, K.P. and Wang, D.G. (2004) Prevalent Overexpression of Prolyl Isomerase Pin1 in Human Cancers. The American Journal of Pathology, 164, 1727-1737.
https://doi.org/10.1016/S0002-9440(10)63731-5 |
[21] | He, J., Zhou, F., Shao, K., Hang, J., Wang, H., Rayburn, E., Xiao, Z.X., Lee, S.W., Xue, Q., Feng, X.L., Shi, S.S., Zhang, C.Y. and Zhang, S. (2007) Overexpression of Pin1 in Non-Small Cell Lung Cancer (NSCLC) and Its Correlation with Lymph Node Metastases. Lung Cancer, 56, 51-58. https://doi.org/10.1016/j.lungcan.2006.11.024 |
[22] | Wulf, G., Garg, P., Liou, Y.C., Iglehart, D. and Lu, K.P. (2004) Modeling Breast Cancer in Vivo and ex Vivo Reveals an Essential Role of Pin1 in Tumorigenesis. The EMBO Journal, 23, 3397-407.
https://doi.org/10.1038/sj.emboj.7600323 |
[23] | Inoue, M.K., Nakatsu, Y., Yamamotoya, T., Hasei, S., Kanamoto, M., Naitou, M., Matsunaga, Y., Sakoda, H., Fujishiro, M., Ono, H., Kushiyama, A. and Asano, T. (2019) Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins. Cells, 8, Article No. 1545. https://doi.org/10.3390/cells8121545 |
[24] | Nevins, J.R. (2001) The Rb/E2F Pathway and Cancer. Human Molecular Genetics, 10, 699-703.
https://doi.org/10.1093/hmg/10.7.699 |
[25] | Ryo, A., Liou, Y.C., Wulf, G., Nakamura, M., Lee, S.W. and Lu, K.P. (2002) PIN1 is an E2F Target Gene Essential for Neu/Ras-Induced Transformation of Mammary Epithelial Cells. Molecular and Cellular Biology, 22, 5281-5295.
https://doi.org/10.1128/MCB.22.15.5281-5295.2002 |
[26] | Ryo, A., Suizu, F., Yoshida, Y., Perrem, K., Liou, Y.C., Wulf, G., Rottapel, R., Yamaoka, S. and Lu, K.P. (2003) Regulation of NF-kappaB Signaling by Pin1-Dependent Prolyl Isomerization and Ubiquitin-Mediated Proteolysis of p65/RelA. Molecular Cell, 12, 1413-1426. https://doi.org/10.1016/S1097-2765(03)00490-8 |
[27] | Rustighi, A., Tiberi, L., Soldano, A., Napoli, M., Nuciforo, P., Rosato, A., Kaplan, F., Capobianco, A., Pece, S., Di Fiore, P.P. and Del Sal, G. (2009) The Prolyl-Isomerase Pin1 Is a Notch1 Target That Enhances Notch1 Activation in Cancer. Nature Cell Biology, 11, 133-142. https://doi.org/10.1038/ncb1822 |
[28] | Nakatsu, Y., Matsunaga, Y., Yamamotoya, T., Ueda, K., Inoue, Y., Mori, K., Sakoda, H., Fujishiro, M., Ono, H., Kushiyama, A. and Asano, T. (2016) Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations. International Journal of Molecular Sciences, 17, Article No. 1495. https://doi.org/10.3390/ijms17091495 |
[29] | Gu, Y., Lindner, J., Kumar, A., Yuan, W. and Magnuson, M.A. (2011) Rictor/mTORC2 Is Essential for Maintaining a Balance between Beta-Cell Proliferation and Cell Size. Diabetes, 60, 827-837. https://doi.org/10.2337/db10-1194 |
[30] | Wang, Y., Li, Y., Yue, M., Wang, J., Kumar, S., Wechsler-Reya, R.J., Zhang, Z., Ogawa, Y., Kellis, M., Duester, G. and Zhao, J.C. (2018) N6-Methyladenosine RNA Modification Regulates Embryonic Neural Stem Cell Self-Renewal through Histone Modifications. Nature Neuroscience, 21, 195-206. https://doi.org/10.1038/s41593-017-0057-1 |
[31] | Raleigh, D.R., Choksi, P.K., Krup, A.L., Mayer, W., Santos, N. and Reiter, J.F. (2018) Hedgehog Signaling Drives Medulloblastoma Growth via CDK6. Journal of Clinical Investigation, 128, 120-124. https://doi.org/10.1172/JCI92710 |
[32] | Cheng, C.W. and Tse, E. (2018) PIN1 in Cell Cycle Control and Cancer. Frontiers in Pharmacology, 9, Article No. 1367. https://doi.org/10.3389/fphar.2018.01367 |
[33] | 李红雨, 石小燕, 徐茜, 邓东锐, 王世宣, 卢运萍, 马丁. Pin1在宫颈癌中过表达及其与Ki67关系的研究[J]. 中国肿瘤临床, 2006, 33(4): 181-185. |
[34] | Pu, W., Zheng, Y. and Peng, Y. (2020) Prolyl Isomerase Pin1 in Human Cancer: Function, Mechanism, and Significance. Frontiers in Cell and Developmental Biology, 8, Article No. 168. https://doi.org/10.3389/fcell.2020.00168 |
[35] | Jiang, L., Cao, M., Hu, J. and Chen, J. (2016) Expression of PIN1 in Gastrointestinal Stromal Tumours and its Clinical Significance. Anticancer Research, 36, 1275-1280. |
[36] | Yu, J.H., Im, C.Y. and Min, S.H. (2020) Function of PIN1 in Cancer Development and Its Inhibitors as Cancer Therapeutics. Frontiers in Cell and Developmental Biology, 8, Article No. 120. https://doi.org/10.3389/fcell.2020.00120 |
[37] | Wulf, G.M., Ryo, A., Wulf, G.G., et al. (2001) Pin1 Is Overexpressed in Breast Cancer and Cooperates with Ras Signaling in Increasing the Transcriptional Activity of C-Jun towards Cyclin D1. The EMBO Journal, 20, 3459-3472.
https://doi.org/10.1093/emboj/20.13.3459 |
[38] | Pang, R.W., Lee, T.K., Man, K., Poon, R.T., Fan, S.T., Kwong, Y.L. and Tse, E. (2006) PIN1 Expression Contributes to Hepatic Carcinogenesis. The Journal of Pathology, 210, 19-25. https://doi.org/10.1002/path.2024 |
[39] | Ayala, G., Wang, D., Wulf, G., Frolov, A., Li, R., Sowadski, J., Wheeler, T.M., Lu, K.P. and Bao, L. (2003) The Prolyl Isomerase Pin1 Is a Novel Prognostic Marker in Human Prostate Cancer. Cancer Research, 63, 6244-6251. |
[40] | Chen, S.Y., Wulf, G., Zhou, X.Z., Rubin, M.A., Lu, K.P. and Balk, S.P. (2006) Activation of Beta-Catenin Signaling in Prostate Cancer by Peptidyl-Prolyl Isomerase Pin1-Mediated Abrogation of the Androgen Receptor-Beta-Catenin Interaction. Molecular and Cellular Biology, 26, 929-939. https://doi.org/10.1128/MCB.26.3.929-939.2006 |
[41] | Lu, Z. and Hunter, T. (2014) Prolyl Isomerase Pin1 in Cancer. Cell Research, 24, 1033-1049.
https://doi.org/10.1038/cr.2014.109 |
[42] | Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[43] | Rioux-Leclercq, N., Turlin, B., Bansard, J., Patard, J., Manunta, A., Moulinoux, J.P., Guillé, F., Ramée, M.P. and Lobel, B. (2000) Value of Immunohistochemical Ki-67 and p53 Determinations as Predictive Factors of Outcome in Renal Cell Carcinoma. Urology, 55, 501-505. https://doi.org/10.1016/S0090-4295(99)00550-6 |
[44] | Shen, T., Yang, L., Zhang, Z., Yu, J., Dai, L., Gao, M., Shang, Z. and Niu, Y. (2019) KIF20A Affects the Prognosis of Bladder Cancer by Promoting the Proliferation and Metastasis of Bladder Cancer Cells. Disease Markers, 2019, Article ID: 4863182. https://doi.org/10.1155/2019/4863182 |
[45] | Ahmad, I., Patel, R., Liu, Y., Singh, L.B., Taketo, M.M., Wu, X.R., Leung, H.Y. and Sansom, O.J. (2011) Ras Mutation Cooperates with β-Catenin Activation to Drive Bladder Tumourigenesis. Cell Death & Disease, 2, Article No. e124. https://doi.org/10.1038/cddis.2011.7 |
[46] | Zhang, C., Berndt-Paetz, M. and Neuhaus, J. (2020) Identification of Key Biomarkers in Bladder Cancer: Evidence from a Bioinformatics Analysis. Diagnostics, 10, Article No. 66. https://doi.org/10.3390/diagnostics10020066 |
[47] | Koikawa, K., Kibe, S., Suizu, F., Sekino, N., Kim, N., Manz, T.D., Pinch, B.J., Akshinthala, D., Verma, A., Gaglia, G., Nezu, Y., Ke, S., Qiu, C., Ohuchida, K., Oda, Y., Lee, T.H., Wegiel, B., Clohessy, J.G., London, N., Santagata, S., Wulf, G.M., Hidalgo, M., Muthuswamy, S.K., Nakamura, M., Gray, N.S., Zhou, X.Z. and Lu, K.P. (2021) Targeting Pin1 Renders Pancreatic Cancer Eradicable by Synergizing with Immunochemotherapy. Cell, 184, 4753-4771.e27.
https://doi.org/10.1016/j.cell.2021.07.020 |
[48] | Han, C., Wang, Z., Chen, S., Li, L., Xu, Y., Kang, W., Wei, C., Ma, H., Wang, M. and Jin, X. (2021) Berbamine Suppresses the Progression of Bladder Cancer by Modulating the ROS/NF-κB Axis. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 8851763. https://doi.org/10.1155/2021/9857803 |
[49] | Margulis, V., Shariat, S.F., Ashfaq, R., Sagalowsky, A.I. and Lotan, Y. (2006) Ki-67 Is an Independent Predictor of Bladder Cancer Outcome in Patients Treated with Radical Cystectomy for Organ-Confined Disease. Clinical Cancer Research, 12, 7369-7373. https://doi.org/10.1158/1078-0432.CCR-06-1472 |
[50] | Man, X., Piao, C., Lin, X., Kong, C., Cui, X. and Jiang, Y. (2019) USP13 Functions as a Tumor Suppressor by Blocking the NF-kB-Mediated PTEN Downregulation in Human Bladder Cancer. Journal of Experimental & Clinical Cancer Research, 38, Article No. 259. https://doi.org/10.1186/s13046-019-1262-4 |
[51] | Wang, H., Zang, C., Liu, X.S. and Aster, J.C. (2015) The Role of Notch Receptors in Transcriptional Regulation. Journal of Cellular Physiology, 230, 982-988. https://doi.org/10.1002/jcp.24872 |
[52] | Lu, N., Piao, M.H., Feng, C.S. and Yuan, Y. (2020) Isoflurane Promotes Epithelial-to-Mesenchymal Transition and Metastasis of Bladder Cancer Cells through HIF-1α-β-Catenin/Notch1 Pathways. Life Sciences, 258, Article ID: 118154. https://doi.org/10.1016/j.lfs.2020.118154 |
[53] | Goriki, A., Seiler, R., Wyatt, A.W., Contreras-Sanz, A., Bhat, A., Matsubara, A., Hayashi, T. and Black, P.C. (2018) Unravelling Disparate Roles of NOTCH in Bladder Cancer. Nature Reviews Urology, 15, 345-357.
https://doi.org/10.1038/s41585-018-0005-1 |
[54] | James, N.D., Hussain, S.A., Hall, E., Jenkins, P., Tremlett, J., Rawlings, C., Crundwell, M., Sizer, B., Sreenivasan, T., Hendron, C., Lewis, R., Waters, R. and Huddart, R.A. (2012) BC2001 Investigators. Radiotherapy with or without Chemotherapy in Muscle-Invasive Bladder Cancer. The New England Journal of Medicine, 366, 1477-1488.
https://doi.org/10.1056/NEJMoa1106106 |
[55] | Tran, L., Xiao, J.F., Agarwal, N., Duex, J.E. and Theodorescu, D. (2021) Advances in Bladder Cancer Biology and Therapy. Nature Reviews Cancer, 21, 104-121. https://doi.org/10.1038/s41568-020-00313-1 |
[56] | Farina, M.S., Lundgren, K.T. and Bellmunt, J. (2017) Immunotherapy in Urothelial Cancer: Recent Results and Future Perspectives. Drugs, 77, 1077-1089. https://doi.org/10.1007/s40265-017-0748-7 |
[57] | Wo??cewicz, M., Hrynkiewicz, R., Grywalska, E., Suchojad, T., Leksowski, T., Roliński, J. and Nied?wiedzka-Rystwej, P. (2020) Immunotherapy in Bladder Cancer: Current Methods and Future Perspectives. Cancers, 12, Article No. 1181.
https://doi.org/10.3390/cancers12051181 |
[58] | Cheng, C.W., Leong, K.W. and Tse, E. (2016) Understanding the Role of PIN1 in Hepatocellular Carcinoma. World Journal of Gastroenterology, 22, 9921-9932. https://doi.org/10.3748/wjg.v22.i45.9921 |
[59] | Pu, W., Li, J., Zheng, Y., Shen, X., Fan, X., Zhou, J.K., He, J., Deng, Y., Liu, X., Wang, C., Yang, S., Chen, Q., Liu, L., Zhang, G., Wei, Y.Q. and Peng, Y. (2018) Targeting Pin1 by Inhibitor API-1 Regulates MicroRNA Biogenesis and Suppresses Hepatocellular Carcinoma Development. Hepatology, 68, 547-560. https://doi.org/10.1002/hep.29819 |
[60] | Wei, S., Kozono, S., Kats, L., Nechama, M., Li, W., Guarnerio, J., et al. (2015) Active Pin1 Is a Key Target of All-Trans Retinoic Acid in Acute Promyelocytic Leukemia and Breast Cancer. Nature Medicine, 21, 457-466.
https://doi.org/10.1038/nm.3839 |