全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线性矩阵不等式半定互补问题的数值求解方法
Numerical Methods for the Semidefinite Complementarity Problem with Linear Matrix Inequalities

DOI: 10.12677/PM.2022.121023, PP. 183-196

Keywords: 半定互补问题,线性矩阵不等式,标量型松弛方法,矩阵型松弛方法
Semidefinite Complementarity Problem
, Linear Matrix Inequalities, Scalar-Type Relaxation Method, Matrix-Type Relaxation Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

线性矩阵不等式半定互补问题是一类新颖的多项式优化问题,是半定规划与互补问题的交叉研究内容。该问题可以转化为一系列带有线性矩阵不等式约束的多项式优化子问题,进而可以采用标量型松弛方法或矩阵型松弛方法进行求解。更进一步,当线性矩阵不等式半定互补问题的实数解个数有限时,利用本文给出的算法可以计算出该问题的全部实数解。最后,我们进行相关数值实验,分别使用标量型松弛方法和矩阵型松弛方法求解该问题,并将这两种方法的结果进行对比。
The semidefinite complementarity problem with linear matrix inequalities is a novel polynomial optimization problem, which is the cross-study content of semidefinite programming and complementarity problems. The problem can be transformed into a series of polynomial optimization subproblems with linear matrix inequality constraints. Then the problem can be solved by the scalar-type relaxation method or the matrix-type relaxation method. Furthermore, when the number of real solutions of the semidefinite complementarity problem with linear matrix inequalities is limited, all real solutions of the problem can be calculated by using the algorithm given in this paper. Finally, we conduct related numerical experiments. We use the scalar-type relaxation method and the matrix-type relaxation method to solve the problem and compare the results of these two methods.

References

[1]  戴昊, 崔志文, 袁鹏, 等. 基于线性矩阵不等式的巡检机器人路径规划[J]. 机械制造与自动化, 2021, 50(4): 212-215.
[2]  Park, I.S., Park, C., Kwon, N.K., et al. (2021) Dynamic Output-Feedback Control for Singular Inter-val-Valued Fuzzy Systems: Linear Matrix Inequality Approach. Information Sciences, 576, 393-406.
https://doi.org/10.1016/j.ins.2021.06.053
[3]  Lasserre, J.B. (2001) Global Optimization with Polynomials and the Problem of Moments. SIAM Journal on Optimization, 11, 796-817.
https://doi.org/10.1137/S1052623400366802
[4]  Hol, C.W.J. and Scherer, C.W. (2004) Sum of Squares Relaxa-tions for Polynomial Semi-Definite Programming. Proceedings Symposium on Mathematical Theory of Networks and Systems (MTNS), Leuven, 5-9 July 2004.
[5]  Hol, C.W.J. and Scherer, C.W. (2005) A Sum-of-Squares Approach to Fixed-Order -Synthesis. In: Positive Polynomials in Control, Springer, Berlin, 45-71.
https://doi.org/10.1007/10997703_3
[6]  Kojima, M. (2003) Sums of Squares Relaxations of Polynomial Semi-Definite Programs. Institute of Technology.
[7]  Henrion, D. and Lasserre, J.B. (2006) Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback. IEEE Transactions on Automatic Control, 51, 192-202.
https://doi.org/10.1109/TAC.2005.863494
[8]  Nie, J.W. (2015) The Hierarchy of Local Minimums in Polynomial Optimization. Mathematical Programming, 151, 555-583.
https://doi.org/10.1007/s10107-014-0845-2
[9]  张怡, 阎晓艳. 用线性矩阵不等式方法求解控制理论问题[J]. 机械管理开发, 2006, 28(1): 24-25.
[10]  Nesterov, Y. and Nemirovskii, A. (1994) Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9781611970791
[11]  王萼芳, 石生明. 高等代数[M]. 第四版. 北京: 高等教育出版社, 2013.
[12]  Griva, I., Shanno, D.F., Vanderbei, R.J., et al. (2008) Global Convergence of a Primal-Dual Interior-Point Method for Nonlinear Programming. Algorithmic Operations Research, 3, 12-29.
[13]  L?fberg, J. (2004) YALMIP: A Toolbox for Modeling and Optimization in MATLAB. 2004 IEEE Inter-national Conference on Robotics and Automation, Taipei, 2-4 September 2004, 284-289.
https://doi.org/10.1109/CACSD.2004.1393890
[14]  Sturm, J.F. (1999) Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones. Optimization Methods and Software, 11, 625-653.
https://doi.org/10.1080/10556789908805766
[15]  Henrion, D., Lasserre, J.B. and L?fberg, J. (2009) Gloptipoly3: Moments, Optimization and Semi-Definite Programming. Optimization Methods and Software, 24, 761-779.
https://doi.org/10.1080/10556780802699201

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133