|
Pure Mathematics 2022
线性矩阵不等式半定互补问题的数值求解方法
|
Abstract:
[1] | 戴昊, 崔志文, 袁鹏, 等. 基于线性矩阵不等式的巡检机器人路径规划[J]. 机械制造与自动化, 2021, 50(4): 212-215. |
[2] | Park, I.S., Park, C., Kwon, N.K., et al. (2021) Dynamic Output-Feedback Control for Singular Inter-val-Valued Fuzzy Systems: Linear Matrix Inequality Approach. Information Sciences, 576, 393-406.
https://doi.org/10.1016/j.ins.2021.06.053 |
[3] | Lasserre, J.B. (2001) Global Optimization with Polynomials and the Problem of Moments. SIAM Journal on Optimization, 11, 796-817. https://doi.org/10.1137/S1052623400366802 |
[4] | Hol, C.W.J. and Scherer, C.W. (2004) Sum of Squares Relaxa-tions for Polynomial Semi-Definite Programming. Proceedings Symposium on Mathematical Theory of Networks and Systems (MTNS), Leuven, 5-9 July 2004. |
[5] | Hol, C.W.J. and Scherer, C.W. (2005) A Sum-of-Squares Approach to Fixed-Order -Synthesis. In: Positive Polynomials in Control, Springer, Berlin, 45-71. https://doi.org/10.1007/10997703_3 |
[6] | Kojima, M. (2003) Sums of Squares Relaxations of Polynomial Semi-Definite Programs. Institute of Technology. |
[7] | Henrion, D. and Lasserre, J.B. (2006) Convergent Relaxations of Polynomial Matrix Inequalities and Static Output Feedback. IEEE Transactions on Automatic Control, 51, 192-202. https://doi.org/10.1109/TAC.2005.863494 |
[8] | Nie, J.W. (2015) The Hierarchy of Local Minimums in Polynomial Optimization. Mathematical Programming, 151, 555-583. https://doi.org/10.1007/s10107-014-0845-2 |
[9] | 张怡, 阎晓艳. 用线性矩阵不等式方法求解控制理论问题[J]. 机械管理开发, 2006, 28(1): 24-25. |
[10] | Nesterov, Y. and Nemirovskii, A. (1994) Interior-Point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics, Philadelphia. https://doi.org/10.1137/1.9781611970791 |
[11] | 王萼芳, 石生明. 高等代数[M]. 第四版. 北京: 高等教育出版社, 2013. |
[12] | Griva, I., Shanno, D.F., Vanderbei, R.J., et al. (2008) Global Convergence of a Primal-Dual Interior-Point Method for Nonlinear Programming. Algorithmic Operations Research, 3, 12-29. |
[13] | L?fberg, J. (2004) YALMIP: A Toolbox for Modeling and Optimization in MATLAB. 2004 IEEE Inter-national Conference on Robotics and Automation, Taipei, 2-4 September 2004, 284-289.
https://doi.org/10.1109/CACSD.2004.1393890 |
[14] | Sturm, J.F. (1999) Using SeDuMi 1.02, a MATLAB Toolbox for Optimization over Symmetric Cones. Optimization Methods and Software, 11, 625-653. https://doi.org/10.1080/10556789908805766 |
[15] | Henrion, D., Lasserre, J.B. and L?fberg, J. (2009) Gloptipoly3: Moments, Optimization and Semi-Definite Programming. Optimization Methods and Software, 24, 761-779. https://doi.org/10.1080/10556780802699201 |