全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Adaptive Generalized Synchronization of Drive-Response Neural Networks with Time-Varying Delay

DOI: 10.4236/am.2022.131002, PP. 19-26

Keywords: Generalized Synchronization, Drive-Response Neural Network, Time-Varying Delay, Adaptive Controller

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper studies the generalized synchronization of a class of drive-response neural networks with time-varying delay. When the topological structures of the drive-response neural networks are known, by designing an appropriate nonlinear adaptive controller, the generalized synchronization of these two networks is obtained based on Lyapunov stability theory and LaSalle’s invariance principle.

References

[1]  Barabási, A.-L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512.
https://doi.org/10.1126/science.286.5439.509
[2]  Strogatz, S.H. (2001) Exploring Complex Networks. Nature, 410, 268-276.
https://doi.org/10.1038/35065725
[3]  Watts, D. and Strogatz, S. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442.
https://doi.org/10.1038/30918
[4]  Ott, E. (2002) Chaos in Dynamical Systems. Cambridge Univ. Press, Cambridge.
https://doi.org/10.1017/CBO9780511803260
[5]  Watts, M. (1999) Renormalization Group Analysis of the Small-World Network Model. Physics Letters A, 263, 341-346.
https://doi.org/10.1016/S0375-9601(99)00757-4
[6]  Newman, M. and Watts, D.J. (1999) Scaling and Percolation in the Small-World Network Model. Physical Review E, 60, 7332-7342.
https://doi.org/10.1103/PhysRevE.60.7332
[7]  Benson, A., Gleich, R.D.F. and Leskovec, J. (2016) Higher-Order Organization of Complex Networks. Science, 353, 163-166.
https://doi.org/10.1126/science.aad9029
[8]  Guo, W. (2011) Lag Synchronization of Complex Networks via Pinning Control. Nonlinear Analysis Real World Applications, 12, 2579-2585.
https://doi.org/10.1016/j.nonrwa.2011.03.007
[9]  Yu, C.B., Qin, J. and Gao, H. (2014) Cluster Synchronization in Directed Networks of Partial-State Coupled Linear Systems under Pinning Control. Automatica, 50, 2341-2349.
https://doi.org/10.1016/j.automatica.2014.07.013
[10]  Chung, S.J., Bandyopadhyay, S., Chang, I. and Hadaegh, F.Y. (2013) Phase Synchronization Control of Complex Networks of Lagrangian Systems on Adaptive Digraphs. Automatica, 49, 1148-1161.
https://doi.org/10.1016/j.automatica.2013.01.048
[11]  Wang, J.A. and Liu, H.P. (2010) Adaptive Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling. Journal of University of Science and Technology Beijing, 32, 61-64.
[12]  Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y. and Zhou, C. (2008) Synchronization in Complex Networks. Physics Reports, 18, Article ID: 037111.
[13]  Radenković, M.S. and Krstić, M. (2018) Distributed Adaptive Consensus and Synchronization in Complex Networks of Dynamical Systems. Automatica, 91, 233-243.
https://doi.org/10.1016/j.automatica.2018.01.039
[14]  Yang, L.X. and Jiang, J. (2014) Adaptive Synchronization of Drive-Response Fractional-Order Complex Dynamical Networks with Uncertain Parameters. Communications in Nonlinear Science & Numerical Simulation, 19, 1496-1506.
https://doi.org/10.1016/j.cnsns.2013.09.021
[15]  Chen, X. and Lu, J. (2007) Adaptive Synchronization of Different Chaotic Systems with Fully Unknown Parameters. Physics Letters A, 364, 123-128.
https://doi.org/10.1016/j.physleta.2006.11.092
[16]  Yang, X., Cao, J. and Lu, J. (2012) Stochastic Synchronization of Complex Networks with Nonidentical Nodes via Hybrid Adaptive and Impulsive Control. IEEE Transactions on Circuits and Systems I Regular Papers, 59, 371-384.
https://doi.org/10.1109/TCSI.2011.2163969
[17]  Han, X., Lu, J.A. and Wu, X. (2008) Synchronization of Impulsively Coupled Systems. International Journal of Bifurcation and Chaos, 18, 1539-1549.
https://doi.org/10.1142/S0218127408021154
[18]  Qiang, S. and Cao, J. (2010) On Pinning Synchronization of Directed and Undirected Complex Dynamical Networks. Circuits and Systems I: Regular Papers, IEEE Transactions on Circuits and Systems I Regular Papers, 57, 672-680.
https://doi.org/10.1109/TCSI.2009.2024971
[19]  Deng, L., Wu, Z. and Wu, Q. (2013) Pinning Synchronization of Complex Network with Non-Derivative and Derivative Coupling. Nonlinear Dynamics, 73, 775-782.
https://doi.org/10.1007/s11071-013-0830-y
[20]  Razminia, A. and Baleanu, D. (2013) Complete Synchronization of Commensurate Fractional Order Chaotic Systems Using Sliding Mode Control. Mechatronics, 23, 873-879.
https://doi.org/10.1016/j.mechatronics.2013.02.004
[21]  Hu, M., Yang, Y., Xu, Z., Rong, Z. and Guo, L. (2007) Projective Synchronization in Drive-Response Dynamical Networks. Physica A: Statistical Mechanics and Its Applications, 381, 457-466.
https://doi.org/10.1016/j.physa.2007.03.023
[22]  Mei, S., Zeng, C.Y. and Tian, L.X. (2008) Projective Synchronization in Drive-Response Dynamical Networks of Partially Linear Systems with Time-Varying Coupling Delay. Physics Letters A, 372, 6904-6908.
https://doi.org/10.1016/j.physleta.2008.10.019
[23]  Shang, Y., Chen, M. and Kurths, J. (2009) Generalized Synchronization of Complex Networks. Physical Review E Statistical Nonlinear and Soft Matter Physics, 80, Article ID: 027201.
https://doi.org/10.1103/PhysRevE.80.027201
[24]  Wu, X., Wei, X.Z. and Jin, Z. (2009) Generalized Outer Synchronization between Complex Dynamical Networks. Chaos, 19, Article ID: 013109.
https://doi.org/10.1063/1.3072787
[25]  Wang, J.A. (2012) Adaptive Generalized Synchronization between Two Different Complex Networks with Time-Varying Delay Coupling. Acta Physica Sinica, 61, Article ID: 020509.
https://doi.org/10.7498/aps.61.020509
[26]  Cao, J.D., Li, P. and Wang, W.W. (2006) Global Synchronization in Arrays of Delayed Neural Networks with Constant and Delayed Coupling. Physics Letters A, 353, 318-325.
https://doi.org/10.1016/j.physleta.2005.12.092
[27]  Langville, A.N. and Stewart, W.J. (2004) The Kronecker Product and Stochastic Automata Networks. Journal of Computational and Applied Mathematics, 167, 429-447.
https://doi.org/10.1016/j.cam.2003.10.010
[28]  Liu, H., Lu, J.A. and Lu, J.H. (2009) Structure Identification of Uncertain General Complex Dynamical Networks with Time Delay. Automatica, 45, 1799-1807.
https://doi.org/10.1016/j.automatica.2009.03.022
[29]  Aeyels, D. (1995) Asymptotic Stability of Nonautonomous Systems by Lyapunov’s Direct Method. Systems and Control Letters, 25, 273-280.
https://doi.org/10.1016/0167-6911(94)00088-D

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133