全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

非对称接触诱导的自供电MAPbBr3光电探测器
Asymmetrically Contact-Induced Self-Powered MAPbBr3 Photodetector

DOI: 10.12677/APP.2021.1112055, PP. 461-468

Keywords: 钙钛矿,MAPbBr3单晶,自供电,光电探测器
Perovskite
, MAPbBr3 Single Crystal, Self-Powered, Photodetector

Full-Text   Cite this paper   Add to My Lib

Abstract:

半导体单晶由于内部具有低的缺陷密度、高的迁移率,而被认为是制备光电器件的优选材料。从应用的角度考虑,如果一个光电探测器可以无需外部供电即可工作,它将具有节能、器件小型化等优点,因此受到了研究者们的广泛关注。本研究工作中,以一种有机–无机杂化的钙钛矿单晶作为光吸收层,利用两种具有不同功函数的金属作为电极,从而导致两个电极与单晶接触的界面处实现了一个非对称的肖特基势垒,最终在该器件中实现了自驱动的工作模式。该自驱动的光电探测器在520 nm处的响应度高达0.39 A?W?1,器件具有快速的响应时间(上升沿:9 μs,下降沿:864 μs)。本工作为下一步开发高性能的自驱动光电探测器提供了一个科学指导和实验基础。
Semiconductor single crystal is considered as the preferred material for photoelectric devices due to its low defect density and high mobility. From the perspective of application, if a photodetector can work without an external power supply, it will have the advantages of energy saving and device miniaturization, so it has been widely concerned by researchers. In this work, an organic-inorganic hybrid perovskite single crystal is used as the light absorption layer, and two metals with different work functions are used as the electrodes, resulting in the realization of an asymmetric Schottky barrier at the interface between the two electrodes and the single crystal. Finally, the self-driven operation mode is realized in the device. The self-driven photodetector has a high responsivity of 0.39 A?W?1 at 520 nm and a fast response time (rising edge: 9 μs, falling edge: 864 μs). This work provides the scientific guidance and experimental basis for the development of high-performance self-driven photodetectors.

References

[1]  Tian, W., Zhou, H. and Li, L. (2017) Hybrid Organic-Inorganic Perovskite Photodetectors. Small, 13, Article ID: 1702107.
https://doi.org/10.1002/smll.201702107
[2]  Wang, S., Zhao, J., Tong, T., Cheng, B., Xiao, Y. and Lei, S. (2019) Bias-Controlled Tunable Electronic Transport with Memory Characteristics in an Individual ZnO Nanowire for Realization of a Self-Driven UV Photodetector with Two Symmetrical Electrodes. ACS Applied Materials & Interfaces, 11, 14932-14943.
https://doi.org/10.1021/acsami.9b00267
[3]  Bie, Y.Q., Liao, Z.M., Zhang, H.Z., Li, G.R., Ye, Y., Zhou, Y.B., Xu, J., Qin, Z.X., Dai, L. and Yu, D.P. (2011) Self-Powered, Ultrafast, Visible-Blind UV Detection and Optical Logical Operation Based on ZnO/GaN Nanoscale p-n Junctions. Advanced Materials, 23, 649-653.
https://doi.org/10.1002/adma.201003156
[4]  Zheng, Z.Q., Lu, J., Yao, J., Gao, W., Xiao, Y., Zhang, M. and Li, J. (2020) An Asymmetric Contact Induced Self- Powered 2D In2S3 Photodetector towards High-Sensitivity and Fast-Response. Nanoscale, 12, 7196-7205.
https://doi.org/10.1039/D0NR00517G
[5]  Perumal Veeramalai, C., Yang, S., Zhi, R., Sulaman, M., Saleem, M.I., Cui, Y. and Zou, B. (2020) Solution-Processed, Self-Powered Broadband CH3NH3PbI3 Photodetectors Driven by Asymmetric Electrodes. Advanced Optical Materials, 8, Article ID: 2000215.
https://doi.org/10.1002/adom.202000215
[6]  Hu, X., Zhang, X., Liang, L., Bao, J., Li, S., Yang, W. and Xie, Y. (2014) High-Performance Flexible Broadband Photodetector Based on Organolead Halide Perovskite. Advanced Functional Materials, 24, 7373-7380.
https://doi.org/10.1002/adfm.201402020
[7]  Ahmadi, M., Collins, L., Higgins, K., Kim, D., Lukosi, E. and Kalinin, S.V. (2019) Spatially Resolved Carrier Dynamics at MAPbBr3 Single Crystal-Electrode Interface. ACS Applied Materials & Interfaces, 11, 41551-41560.
https://doi.org/10.1021/acsami.9b16287
[8]  Deng, W., Huang, L., Xu, X., Zhang, X., Jin, X., Lee, S.T. and Jie, J. (2017) Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Letters, 17, 2482-2489.
https://doi.org/10.1021/acs.nanolett.7b00166
[9]  Wu, C.Y., Peng, W., Fang, T., Wang, B., Xie, C., Wang, L., Yang, W.H. and Luo, L.B. (2019) Asymmetric Contact- Induced Self-Driven Perovskite Microwire-Array Photodetectors. Advanced Electronic Materials, 2019, Article ID: 1900135.
https://doi.org/10.1002/aelm.201900135
[10]  Ding, J., Fang, H.J., Lian, Z.P., Li, J.W., Lyu, Q.R., Wang, L.D., Sun, J.L. and Yan, Q.F. (2016) A Self-Powered Photodetector Based on CH3NH3PbI3 Single Crystal with Asymmetric Electrodes. CrystEngComm, 18, 4405-4411.
https://doi.org/10.1039/C5CE02531A
[11]  Tang, W., Zhang, J., Ratnasingham, S.R., Liscio, F., Chen, K., Liu, T. and Fenwick, O. (2020) Substitutional Doping of Hybrid Organic-Inorganic Perovskite Crystals for Thermoelectrics. Journal of Materials Chemistry A, 8, 13594-13599.
https://doi.org/10.1039/D0TA03648J
[12]  He, Y., Matei, L., Jung, H.J., McCall, K.M., Chen, M., Stoumpos, C.C., Liu, Z., Peters, J.A., Chung, D.Y., Wessels, B. W. and Wasielewski, M.R. (2018) High Spectral Resolution of Gamma-Rays at Room Temperature by Perovskite CsPbBr3 Single Crystal. Nature Communications, 9, Article No. 1609.
https://doi.org/10.1038/s41467-018-04073-3
[13]  Yu, W.J., Liu, Y., Zhou, H., Yin, A., Li, Z., Huang, Y. and Duan, X. (2013) Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. Nature Nanotechnology, 8, 952-958.
https://doi.org/10.1038/nnano.2013.219
[14]  Li, L., Chen, H., Fang, Z., Meng, X., Zuo, C., Lyu, M., et al. (2020) An Electrically Modulated Single-Color/Dual- Color Imaging Photodetector. Advanced Materials, 32, Article ID: e1907257.
https://doi.org/10.1002/adma.201907257
[15]  Cho, Y., Jung, H.R., Kim, Y.S., Kim, Y., Park, J., Yoon, S., Lee, Y., Cheon, M., Jeong, S. and Jo, W. (2021) High Speed Growth of MAPbBr3 Single Crystals via Low-Temperature Inverting Solubility: Enhancement of Mobility and Trap Density for Photodetector Applications. Nanoscale, 13, 8275-8282.
https://doi.org/10.1039/D1NR01600H
[16]  张明静. 大尺寸CH3NH3PbBr3钙钛矿单晶材料制备与性能研究[D]: [硕士学位论文]. 天津: 天津理工大学, 2020: 1-61.
[17]  王文贞. 探测器用卤化物钙钛矿晶体的生长及其物理性能的研究[D]: [博士学位论文]. 上海: 上海大学, 2020: 1-124.
[18]  Bao, C.X., Chen, Z.L., Fang, Y.J., Wei, H.T., Deng, Y.H., Xiao, X., Li, L.L. and Huang, J.S. (2017) Low-Noise and Large-Linear-Dynamic-Range Photodetec-tors Based on Hybrid-Perovskite Thin-Single-Crystals. Advanced Materials, 29, Article ID: 1703209.
https://doi.org/10.1002/adma.201703209
[19]  Xu, Q., Shao, W., Li, Y., Zhang, X., Ouyang, X., Liu, J., Liu, B., Wu, Z., Ouyang, X., Tang, X. and Jia, W. (2019) High-Performance Surface Barrier X-Ray Detector Based on Methylammonium Lead Tribromide Single Crystals. ACS Applied Materials & Interfaces 11, 9679-9684.
https://doi.org/10.1021/acsami.8b21605
[20]  Sun, M., Yang, P., Xie, D., Sun, Y., Xu, J., Ren, T. and Zhang, Y. (2018) Self-Powered MoS2?PDPP3T Heterotransistor-Based Broadband Photodetectors. Advanced Electronic Materials, 5, Article ID: 1800580.
https://doi.org/10.1002/aelm.201800580
[21]  Fang, Y., Dong, Q., Shao, Y., Yuan, Y. and Huang, J. (2015) Highly Narrowband Perovskite Single-Crystal Photodetectors Enabled by Surface-Charge Recombination. Nature Photonics, 9, 679-686.
https://doi.org/10.1038/nphoton.2015.156
[22]  Mitra, S., Muhammed, M.M., Alwadai, N., Almalawi, D.R., Xin, B., Pak, Y. and Roqan, I.S. (2020) Optimized Performance III-Nitride-Perovskite-Based Heterojunction Photodetector via Asymmetric Electrode Configuration. RSC Advances, 10, 6092-6097.
https://doi.org/10.1039/C9RA08823G

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133