全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

蒲公英状VO2纳米材料用于水系锌离子电池正极的性能研究
Investigated the Performance of Dandelion-Like VO2 Nanomaterials as Cathode for Aqueous Zinc Ion Batteries

DOI: 10.12677/APP.2021.1112054, PP. 453-460

Keywords: 水系锌离子电池,二氧化钒,蒲公英状,储锌性能
Aqueous Zinc Ion Battery
, VO2, Dandelion-Like, Zinc Ionsstorage Performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

水系锌离子电池由于其安全性高、成本低,是一种极具应用潜力的储能系统,但容量不佳以及正极循环稳定性差阻碍其进一步发展。本文应用水热法合成了一种由纳米线构成的蒲公英状的VO2正极材料,该独特的形貌不仅改善了VO2纳米线的自堆积问题,而且赋予VO2正极丰富的活性位点和优异的结构稳定性,显示出极好的储锌性能。电流密度为0.1 A?g?1时,其容量为307 mAh?g?1;电流密度为0.5 A?g?1时,其容量为261 mAh?g?1,循环200次后容量保持率在64.6%,且在5 A?g?1的高电流密度下循环2300次依然保持优异的稳定性。这项工作为水系锌离子电池先进正极材料的设计及合成提供了新思路。
Aqueous zinc ion battery is an energy storage system with great application potential because of its high safety and low cost, but its further development is hindered by low capacity and poor cycle stability of cathode materials. In this paper, dandelion-like VO2 composed of nanowires was synthesized with hydrothermal method. This unique morphology not only improves the self-stacking problem of VO2 nanowires, but also endows VO2 cathode with abundant active sites and excellent structural stability. Thus, it exhibits excellent znic ions storage performance of 307 mAh?g?1 at 0.1 A?g?1, 261.5 mAh?g?1 at 0.5 A?g?1, and the capacity retention rate is 64% after 200 cycles. It keeps capable cycling stability even after 2300 cycles. This work provides a new idea for the design and synthesis of advanced cathode materials for aqueous zinc ion battery.

References

[1]  Nitta, N., Wu, F., Lee, J.T. and Yushin, G. (2015) Li-ion Battery Materials: Present and Future. Materials Today, 18, 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[2]  Kim, H., Hong, J., Park, K.Y., Kim, H., Kim, S.W. and Kang, K. (2014) Aqueous Rechargeable Li and Na Ion Batteries. Chemical Reviews, 114, 11788-11827.
https://doi.org/10.1021/cr500232y
[3]  Fang, G.Z., Zhu, C.Y., Chen, M.H., Zhou, J., Tang, B.Y., Cao, X.X., Zheng, X.S., Pan, A.Q. and Liang, S.Q. (2019) Suppressing Manganese Dissolution in Potassium Manganate with Rich Oxygen Defects Engaged High-Energy-Density and Durable Aqueous Zinc-Ion Battery. Advanced Functional Materials, 29, 1808375.
https://doi.org/10.1002/adfm.201808375
[4]  Kundu, D., Adams, B.D., Duffort, V., Vajargah, S.H. and Nazar, L.F. (2016) A High-Capacity and Long-Life Aqueous Rechargeable Zinc Battery Using A Metal Oxide Intercalation Cathode. Nature Energy, 1, 16119.
https://doi.org/10.1038/nenergy.2016.119
[5]  Trócoli, R. and La Mantia, F. (2015) An Aqueous Zinc-Ion Battery Based on Copper Hexacyanoferrate. ChemSusChem, 8, 481-485.
https://doi.org/10.1002/cssc.201403143
[6]  Liu, Y. and Wu, X. (2021) Review of Vanadium-Based Electrode Materials for Rechargeable Aqueous Zinc Ion Batteries. Journal of Energy Chemistry, 56, 223-237.
https://doi.org/10.1016/j.jechem.2020.08.016
[7]  Zhang, Y., Deng, S.J., Luo, M., Pan, G.X., Zeng, Y.X., Lu, X.H., Ai, C.Z., Liu, Q., Xiong, Q.Q., Wang, X.H., Xia, X.H. and Tu, J.P. (2019) Defect Promoted Capacity and Durability of N-MnO2–X Branch Arrays via Low-Temperature NH3 Treatment for Advanced Aqueous Zinc Ion Batteries. Small, 15, 1905452.
https://doi.org/10.1002/smll.201905452
[8]  Liu, Q., Tan, G.Q., Wang, P., Abeyweera, S.C., Zhang, D.T., Rong, Y.C., Wu, Y.A., Liu, J., Sun, C.J., Ren, Y., Liu, Y.Z., Muehleisen, R.T., Guzowski, L.B., Li, j., Xiao, X.H. and Sun, Y.G. (2017) Revealing Mechanism Responsible for Structural Reversibility of Single-Crystal VO2 Nanorods upon Lithiation/Delithiation. Nano Energy, 36, 197-205.
https://doi.org/10.1016/j.nanoen.2017.04.023
[9]  Niu, C.J., Meng, J.S., Han, C.H., Zhao, K.N., Yan, M.Y. and Mai, L.Q. (2014) VO2 Nanowires Assembled into Hollow Microspheres for High-Rate and Long-Life Lithium Batteries. Nano letters, 14, 2873-2878.
https://doi.org/10.1021/nl500915b
[10]  Moraes, B. R., Campos, N. S. and Izumi, C. M. (2018) Surface-Enhanced Raman Scattering of EDOT and PEDOT on Silver and Gold Nanoparticles. Vibrational Spectroscopy, 96, 137-142.
https://doi.org/10.1016/j.vibspec.2018.04.006
[11]  Dai, X., Wan, F., Zhang, L.L., Cao, H.M. and Niu, Z.Q. (2019) Freestanding Graphene/VO2 Composite Films for Highly Stable Aqueous Zn-Ion Batteries with Superior Rate Performance. Energy Storage Materials, 17, 143-150.
https://doi.org/10.1016/j.ensm.2018.07.022
[12]  Chen, L.N., Ruan, Y.S., Zhang, G.B., Wei, Q.L., Jiang, Y.L., Xiong, T.F., He, P., Yang, W., Yan, M.Y., An, Q.Y. and Mai, L.Q. (2019) Ultrastable and High-Performance Zn/VO2 Battery Based on a Reversible Single-Phase Reaction. Chemistry of Materials, 31, 699-706.
https://doi.org/10.1021/acs.chemmater.8b03409
[13]  Cai, Y., Chua, R., Kou, Z.K., Ren, H., Yuan, D., Huang, S.Z., Kumar, S., Verma, V., Amonpattaratkit, P.and Srinivasan, M. (2020) Boosting Zn-Ion Storage Performance of Bronze-Type VO2 via Ni-Mediated Electronic Structure Engineering. ACS Applied Materials & Interfaces, 12, 36110-36118.
https://doi.org/10.1021/acsami.0c09061

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133