|
Material Sciences 2021
熔融盐法制备Na掺杂的缺陷型g-C3N4
|
Abstract:
采用一步煅烧法,控制熔融盐NaCl的用量得到一系列Na掺杂的缺陷型g-C3N4。样品的物相和元素组成表征结果表明,所制备的样品是Na掺杂的g-C3N4,Na的掺杂导致g-C3N4中暴露了N缺陷,且随着NaCl用量的增加,g-C3N4中的缺陷浓度逐渐升高最终趋于饱和。Na掺杂的g-C3N4的光催化产H2O2性能明显优于纯相g-C3N4,当NaCl与尿素的比例为1/5时样品表现最佳光催化活性,达到1.17 mmol/(g?h)的H2O2产生速率。光电性能测试结果表明,g-C3N4中的N缺陷可以作为电子载体陷阱,捕获光生电子,促进光生电子空穴对的分离,而Na可以充当层间传输通道,促进光生电子的迁移。通过捕获剂实验以及EPR测定,确定光催化产H2O2过程中主要的活性物种为1O2。
By calcining different ratios of precursor urea and molten salt NaCl, defective g-C3N4 doped with different amounts of Na is obtained. The characterization results of the phase and element composition of asprepared samples showed that the samples are Na-doped g-C3N4, in which N defects are exposed and the amount of N defects in g-C3N4 tends to be saturated with the increase of the amount of NaCl. The photocatalytic H2O2 production activity of Na doped g-C3N4 is better than pure g-C3N4. When the mass ratio of NaCl/Urea was 1/5, g-C3N4 showed the best photocatalytic activity, reaching a rate of 1.17 mmol/(g?h). The photoelectric properties of samples exhibited that N vacancies can be acted as electron carrier traps to capture photogenerated electrons and promote the separation of photogenerated electronhole pairs, and Na can act as an interlayer transmission channel to promote the migration of photogenerated electrons. Through the capture agent experiment and EPR determination, it was determined that 1O2 is the main active species in the process of photocatalytic H2O2 production.
[1] | Yang, S., Verdaguer Casadevall, A., Arnarson, L., Silvio, L., Colic, V., Frydendal, R., Rossmeisl, J., Chorkendorff, I. and Stephens, I.E.L. (2018) Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catalysis, 8, 4064-4081. https://doi.org/10.1021/acscatal.8b00217 |
[2] | Hou, H.L., Zeng, X.K. and Zhang, X.W. (2020) Production of Hydrogen Peroxide by Photocatalytic Processes. AngewandteChemie-International Edition, 59, 17356-17376. https://doi.org/10.1002/anie.201911609 |
[3] | Ong, W.J., Tan, L.L., Ng, Y.H., Yong, S.T. and Chai, S.P. (2016) Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chemical Reviews, 116, 7159-7329. https://doi.org/10.1021/acs.chemrev.6b00075 |
[4] | Yu, X.N., Ng, S.F., Putri, L.K., Tan, L.L., Mohamed, A.R. and Ong, W.J. (2021) Point-Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g-C3N4) Photocatalysts toward Artificial Photosynthesis. Small, Article ID: 2006851. https://doi.org/10.1002/smll.202006851 |
[5] | Wang, W.K., Zhang, H.M., Zhang, S.B., Liu, Y.Y., Wang, G.Z., Sun, C.H. and Zhao, H.J. (2019) Potassium Ion Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visible Light Driven Photocatalytic Nitrogen Reduction. Angewandte Chemie-International Edition, 58, 16644-16650.
https://doi.org/10.1002/anie.201908640 |
[6] | Zhang, G.Q., Xu, Y.S., Yan, D.F., He, C.X., Li, Y.L., Ren, X.Z., Zhang, P.X. and Mi, H.W. (2021) Construction of K+ Ion Gradient in Crystalline Carbon Nitride to Accelerate Exciton Dissociation and Charge Separation for Vsible Light H2 Production. ACS Catalysis, 11, 6995-7005. https://doi.org/10.1021/acscatal.1c00739 |
[7] | Zhang, G.G., Lin, L.H., Li, G.S., Zhang, Y.F., Savateev, A., Zafeiratos, S., Wang, X.C. and Antonietti, M. (2018) Ionothermal Synthesis of Triazine-Heptazine-Based Copolymers with Apparent Quantum Yields of 60% at 420 nm for Solar Hydrogen Production from “Sea Water”. Angewandte Chemie-International Edition, 57, 9372-9376.
https://doi.org/10.1002/anie.201804702 |
[8] | Zhang, G.G., Li, G.S., Heil, T., Zafeiratos, S., Lai, F.L., Savateev, A., Antonietti, M. and Wang, X.C. (2019) Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction. Angewandte Chemie-International Edition, 58, 3433-3437. https://doi.org/10.1002/anie.201811938 |
[9] | Kessler, F.K., Zheng, Y., Schwarz, D., Merschjann, C., Schnick, W., Wang, X.C. and Bojdys, M.J. (2017) Functional Carbon Nitride Materials Design Strategies for Electrochemical Devices. Nature Reviews Materials, 2, Article No. 17030. https://doi.org/10.1038/natrevmats.2017.30 |
[10] | Jurgens, B., Irran, E., Senker, J., Kroll, P., Muller, H. and Schnick, W. (2003) Melem (2,5,8-Triamino-Tri-s-Triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Teoretical Studies. Journal of the American Chemical Society, 125, 10288-10300. https://doi.org/10.1021/ja0357689 |
[11] | Seyfarth, L. and Senker, J. (2009) An NMR Crystallographic Approach for the Determination of the Hydrogen Substructure of Nitrogen Bonded Protons. Physical Chemistry Chemical Physics, 11, 3522-3531.
https://doi.org/10.1039/b819319c |
[12] | Chen, L., Chen, C., Yang, Z., Li, S., Chu, C.H. and Chen, B.L. (2021) Simultaneously Tuning Band Structure and Oxygen Reduction Pathway toward High-Efficient Photocatalytic Hydrogen Peroxide Production using Cyano-Rich Graphitic Carbon Nitride. Advanced Functional Materials, 31, Article ID: 2105731.
https://doi.org/10.1002/adfm.202105731 |
[13] | Wang, Y., Du, P.P., Pan, H.Z., Fu, L., Zhang, Y., Chen, J., Du, Y.W., Tang, N.J. and Liu, G. (2019) Increasing Solar Absorption of AtomicallyThin 2D Carbon Nitride Sheets for Enhanced Visible-Light Photocatalysis. Advanced Materials, 31, Article ID: 1807540. https://doi.org/10.1002/adma.201807540 |
[14] | Wang, Y.H., Liu, L.Z., Ma, T.Y., Zhang, Y.H. and Huang, H.W. (2021) 2D Graphitic Carbon Nitride for Energy Conversion and Storage. Advanced Functional Materials, 31, Article ID: 2102540.
https://doi.org/10.1002/adfm.202102540 |
[15] | Wu, S., Yu, H.T., Chen, S. and Quan, X. (2020) Enhanced Photocatalytic H2O2 Production over Carbon Nitride by Doping and Defect Engineering. ACS Catalysis, 10, 14380-14389. https://doi.org/10.1021/acscatal.0c03359 |
[16] | Shiraishi, Y., Kanazawa, S., Kofuji, Y., Sakamoto, H., Ichikawa, S., Tanaka, S. and Hirai, T. (2014) Sunlight Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts. Angewandte Chemie-International Edition, 53, 13454-13459. https://doi.org/10.1002/anie.201407938 |
[17] | Moon, G.H., Fujitsuka, M., Kim, S., Majima, T., Wang, X.C. and Choi, W. (2017) Eco-Friendly Photochemical Production of H2O2 through O2 Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements. ACS Catalysis, 7, 2886-2895. https://doi.org/10.1021/acscatal.6b03334 |
[18] | Kim, H.I., Choi, Y., Hu, S., Choi, W. and Kim, J.H. (2018) Photocatalytic Hydrogen Peroxide Production by Anthraquinone-Augmented Polymeric Carbon Nitride. Applied Catalysis B-Environmental, 229, 121-129.
https://doi.org/10.1016/j.apcatb.2018.01.060 |
[19] | Zhao, S., Zhao, X., Ouyang, S.X. and Zhu, Y.F. (2018) Polyoxometalates Covalently Combined with Graphitic Carbon Nitride for Photocatalytic Hydrogen Peroxide Production. Catalysis Science & Technology, 8, 1686-1695.
https://doi.org/10.1039/C8CY00043C |
[20] | Kofuji, Y., Isobe, Y., Shiraishi, Y., Sakamoto, H., Tanaka, S., Ichikawa, S. and Hirai, T. (2016) Carbon Nitride-Aromatic Diimide-Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. Journal of the American Chemical Society, 138, 10019-10025.
https://doi.org/10.1021/jacs.6b05806 |
[21] | Zhang, P., Tong, Y.W., Liu, Y., Vequizo, J.J.M., Sun, H.W., Yang, C., Yamakata, A., Fan, F.T., Lin, W., Wang, X.C. and Choi, W.Y. (2020) Heteroatom Dopants Promote Two-Electron O2 Reduction for Photocatalytic Production of H2O2 on Polymeric Carbon Nitride. AngewandteChemie-International Edition, 59, 16209-16217.
https://doi.org/10.1002/anie.202006747 |
[22] | Feng, C.Y., Tang, L., Deng, Y.C., Wang, J.J., Luo, J., Liu, Y., Ouyang, X.L., Yang, H.R., Yu, J.F. and Wang, J.J. (2020) Synthesis of Leaf-Vein-Like g-C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution. Advanced Functional Materials, 30, Article ID: 2001922.
https://doi.org/10.1002/adfm.202001922 |
[23] | Zhao, H.P., Li, G.F., Tian, F., Jia, Q.T., Liu, Y.L. and Chen, R. (2019) g-C3N4 Surface-Decorated Bi2O2CO3 for Improved Photocatalytic Performance: Theoretical Calculation and Photodegradation of Antibiotics in Actual Water Matrix. Chemical Engineering Journal, 366, 468-479. https://doi.org/10.1016/j.cej.2019.02.088 |
[24] | Hu, X., Zhao, H.P., Liang, Y. and Chen, R. (2019) Energy Level Mediation of (BiO)2CO3 via Br Doping for Efficient Molecular Oxygen Activation and Ciprofloxacin Photodegradation. Applied Catalysis B: Environmental, 258, Article ID: 117966. https://doi.org/10.1016/j.apcatb.2019.117966 |
[25] | Bai, F., Xu, L., Zhai, X.Y., Chen, X. and Yang, W.S. (2019) Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application. Advanced Energy Materials, 10, Article ID: 1902107.
https://doi.org/10.1002/aenm.201902107 |
[26] | Xiong, T., Cen, W.L., Zhang, Y.X. and Dong, F. (2016) Bridging the g-C3N4 Inxterlayers for Enhancxed Pxhotocatalysis. ACS Catalysis, 6, 2462-2472. https://doi.org/10.1021/acscatal.5b02922 |
[27] | Zhao, S. and Zhao, X. (2019) Insights into the Role of Singlet Oxygen in the Photocatalytic Hydrogen Peroxide Production over Polyoxometalates-Derived Metal Oxides Incorporated into Graphitic Carbon Nitride Framework. Applied Catalysis B: Environmental, 250, 408-418. https://doi.org/10.1016/j.apcatb.2019.02.031 |