|
内蒙古道郞和都格矿区电气石期次及硼同位素特征
|
Abstract:
内蒙古镶黄旗道郎和都格矿区位于华北地块北缘与西伯利亚板块南缘,在成矿带上属于温都尔庙–白乃庙成矿带东段。矿区地表岩体与石英脉中广泛发育电气石化矿物,且至少可分为早、晚两期。早期电气石,棕色–褐色,结晶较好,呈柱状晶形;晚期电气石,深蓝–墨绿色,结晶较差。区内电气石常出现特征的核–边结构。其硼同位素组成大部分落在与花岗岩有关的范围内,少量样品富集11B,推测可能与岩浆去气作用有关,该去气假设也得到C、H、O稳定同位素及其组成特征的佐证。
Daolangheduge district is located in northern margin of North China Plate, and in the southern margin of Siberia plate as well. Regionally, it belongs to east part of Ondor Sum-Bainaimiao me-tallogenic belt. Rich tourmaline zoning was found in this district. The tourmaline in Daolanghe-duge district could be classified into two stages. The earlier stage tourmaline, in brown-brown color, crystallization in columnar shape, is good. While later stage tourmaline, deep blue-blackish green color, with poorer crystallization extent. With regarding to boron isotopes in tourmaline, most of them are same as that of granite, closely related to hydro-fluid process, with a small amount samples enrich heavy boron isotopes, it is postulated that magma degassing cause later stage tourmaline rich in 11B. Magma degassing hypothesis is also supported by C, H, O stable isotopes and their composition.
[1] | Kawakami, T. (2001) Boron Depletion Controlled by the Breakdown of Tourmaline in the Migmatite Zone of the Aoyama Area, Ryoke Metamorphic Belt, Southwestern Japan. Canadian Mineralogist, 39, 1529-1546.
https://doi.org/10.2113/gscanmin.39.6.1529 |
[2] | Voll, G. (1969) Klastische Mineralien aus den Sedimentserien der Schottischen Highlands und ihr Schiksal bei auf?steigender Regional-und Kontaktmetamorphose. Habilitation Thesis, Technische Universit?t Berlin, Berlin. |
[3] | Marschall, H.R., Altherr, R., Kalt, A. and Ludwig, T. (2008) Detrital, Metamorphic and Metasomatic Tourmaline in High-Pressure Metasediments from Syros (Greece): Intra-Grain Boron Isotope Patterns Determined by Secondary-Ion Mass Spectrometry. Contributions to Mineralogy and Petrology, 155, 703-717.
https://doi.org/10.1007/s00410-007-0266-9 |
[4] | Marschall, H.R., Korsakov, A.V., Luvizotto, G.L., Nasdala, L. and Ludwig, T. (2009) On the Occurrence and Boron Isotopic Composition of Tourmaline in (Ultra) High-Pressure Metamorphic Rocks. Journal of the Geological Society, 166, 811-823. https://doi.org/10.1144/0016-76492008-042 |
[5] | Marschall, H.R., Ludwig, T., Altherr, R. and Kalt, A. (2006) Syros Metasomatic Tourmaline: Evidence for Very High- δ11B Fluids in Subduction Zones. Journal of Petrology, 47, 1915-1942. https://doi.org/10.1093/petrology/egl031 |
[6] | Martínez-Martínez, J.M., Torres-Ruiz, J., Pesquera, A. and Gil-Crespo, P.P. (2010) Geological Relationships and U-Pb Zircon and 40Ar/39Ar Tourmaline Geochronology of Gneisses and Tourmalinites from the Nevado-Filabride Complex (Western Sierra Nevada, Spain): Tectonic Implications. Lithos, 119, 238-250.
https://doi.org/10.1016/j.lithos.2010.07.002 |
[7] | Slack and Trumbull (2011) Tourmaline as a Petrologic Forensic Mineral—A Unique Recorder of Its Geologic Past. Elements, 7, 327-332. https://doi.org/10.2113/gselements.7.5.327 |
[8] | 毛景文, 陈毓川, 陈晴勋, 杨开泰. 中国桂北地区两类电英岩及其对成矿环境的指示[J]. 岩石矿物学杂志, 1990, 9(4): 289-300. |
[9] | 蒋少涌, 于际民, 倪培, 凌洪飞. 电气石——成岩成矿作用的灵敏示踪剂[J]. 地质论评, 2000, 46(6): 594-604. |
[10] | Xiao, W.J., Windley, B.F., Hao, J. and Zhai, M.G. (2003) Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22, 1069-1484.
https://doi.org/10.1029/2002TC001484 |
[11] | 鲁颖淮, 李文博, 赖勇. 内蒙古镶黄旗哈达庙金矿床含矿斑岩体形成时代和成矿构造背景[J]. 岩石学报, 2009, 25(10): 2615-2620. |
[12] | Taylor, B.E. and Slack, J.F. (1984) Tourmalines from Appalachian-Caledonian Massive Sulfide Deposits: Textural, Chemical, and Isotopic Relationships. Economic Geology, 79, 1703-1726. https://doi.org/10.2113/gsecongeo.79.7.1703 |
[13] | Palmer, M.R. and Swihart, G.H. (1996) Boron Isotope Geochemistry: An Overview. Mineralogy, Petrology, and Geochemistry, 33, 709-744. |
[14] | Trumbull, R.B., Slack, J.F., Krienitz, M.-S., Belkin, H.E. and Wiedenbeck, M. (2011) Fluid Sources and Metallogenesis in the Blackbird Co-Cu-Au-Bi-Y-REE District, Idaho, U.S.A.: Insights from Major Element and Boron Isotopic Compositions of Tourmaline. Canadian Mineralogist, 49, 225-244. https://doi.org/10.3749/canmin.49.1.225 |
[15] | Jiang, S.Y. and Palmer, M.R. (1998) Boron Isotope Systematics of Tourmaline from Granites and Pegmatites: A Synthesis. European Journal of Mineralogy, 10, 1253-1265. https://doi.org/10.1127/ejm/10/6/1253 |
[16] | Meyer, C., Wunder, B., Meixner, A., Romer, R.L. and Heinrich, W. (2008) Boron-Isotope Fractionation between Tourmaline and Fluid: An Experimental Re-Investigation. Contributions to Mineralogy and Petrology, 156, 259-267.
https://doi.org/10.1007/s00410-008-0285-1 |
[17] | Smith, M.P. and Yardley, B.W.D. (1996) The Boron Isotopic Composition of Tourmaline as a Guide to Fluid Processes in the Southwestern England Orefield: An Ion Microprobe Study. Geochimica et Cosmochimica Acta, 60, 1415-1427.
https://doi.org/10.1016/0016-7037(96)00007-5 |
[18] | van Hinsberg, V.J., Henry, D.J. and Dutrow, B.L. (2011) Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. Elements, 7, 327-332. https://doi.org/10.2113/gselements.7.5.327 |
[19] | 魏春生, 郑永飞. 中国东部A型花岗岩D-18O亏损机理: 去气vs水/岩交换[J]. 地球学报: 中国地质科学院院报, 1997, 18(A00): 257-259. |