全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

垂体腺瘤免疫治疗现状及进展
Current Status and Progress of Immunotherapy for Pituitary Adenoma

DOI: 10.12677/ACM.2021.1110677, PP. 4611-4615

Keywords: 垂体腺瘤,免疫检查点抑制剂,免疫治疗
Pituitary Adenoma
, Immune Checkpoint Inhibitors, Immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

垂体腺瘤是颅内一种常见的肿瘤,占颅内原发性肿瘤的10%~20%,垂体肿瘤在成人中发病率占第三位,仅次于脑胶质细胞瘤和脑膜瘤。目前手术、药物和放射治疗是垂体腺瘤治疗的三大重要治疗策略。然而垂体瘤易复发,控制欠佳,急需寻求新的治疗手段。肿瘤免疫治疗是一种很有前景的治疗方法,目前已应用于包括垂体肿瘤在内的多种肿瘤的治疗。本文通过回顾近年来国内外最新进展,我们总结了免疫检查点的最新发现及其作为垂体肿瘤免疫治疗靶点的潜力,以期为垂体腺瘤治疗提供一定的参考。
Pituitary adenoma is a common intracranial tumor, which accounts for 10%~20% of the primary intracranial tumors. Pituitary adenoma is the third most common tumor in adults, next to glioma and meningioma. At present, surgery, drug therapy and radiotherapy are three important therapeutic strategies for pituitary adenomas. However, pituitary adenoma is easy to recur and has poor control, so it is urgent to seek new treatment. Tumor immunotherapy is a promising therapeutic method, which has been applied to a variety of tumors, including pituitary tumors. In this review, we summarize the latest findings of immunologic examination and site selection and their potential as immunotherapeutic targets for pituitary tumors in order to provide some references for the treatment of pituitary adenoma.

References

[1]  Molitch, M.E. (2017) Diagnosis and Treatment of Pituitary Adenomas: A Review. JAMA, 317, 516-524.
https://doi.org/10.1001/jama.2016.19699
[2]  Hansen, T.M., Batra, S., Lim, M., Gallia, G.L., Burger, P.C., Salvatori, R., et al. (2014) Invasive Adenoma and Pituitary Carcinoma: A SEER Database Analysis. Neurosurgical Review, 37, 279-285; Discussion 285-286.
https://doi.org/10.1007/s10143-014-0525-y
[3]  Yavropoulou, M.P., Tsoli, M., Barkas, K., Kaltsas, G. and Grossman, A. (2020) The Natural History and Treatment of Non-Functioning Pituitary Adenomas (Non-Functioning PitNETs). Endocrine-Related Cancer, 27, R375-R390.
https://doi.org/10.1530/ERC-20-0136
[4]  Kasuki, L. and Raverot, G. (2020) Definition and Diagnosis of Aggressive Pituitary Tumors. Reviews in Endocrine & Metabolic Disorders, 21, 203-208.
https://doi.org/10.1007/s11154-019-09531-x
[5]  Raverot, G., Burman, P., McCormack, A., Heaney, A., Petersenn, S., Popovic, V., et al. (2018) European Society of Endocrinology Clinical Practice Guidelines for the Management of Aggressive Pituitary Tumours and Carcinomas. European Journal of Endocrinology, 178, G1-G24.
https://doi.org/10.1530/EJE-17-0796
[6]  Lopes, M.B.S. (2017) The 2017 World Health Organization Classification of Tumors of the Pituitary Gland: A Summary. Acta Neuropathologica, 134, 521-535.
https://doi.org/10.1007/s00401-017-1769-8
[7]  O’Donnell, J.S., Teng, M.W.L. and Smyth, M.J. (2019) Cancer Immunoediting and Resistance to T Cell-Based Immunotherapy. Nature Reviews Clinical Oncology, 16, 151-167.
https://doi.org/10.1038/s41571-018-0142-8
[8]  Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355.
https://doi.org/10.1126/science.aar4060
[9]  Giraldo, N.A., Sanchez-Salas, R., David Peske, J., Vano, Y., Becht, E., Petitprez, F., et al. (2019) The Clinical Role of the TME in Solid Cancer. British Journal of Cancer, 120, 45-53.
https://doi.org/10.1038/s41416-018-0327-z
[10]  Wang, P.-F., Wang, T.-J., Yang, Y.-K., Yao, K., Li, Z., Li, Y.M., et al. (2018) The Expression Profile of PD-L1 and CD8+ Lymphocyte in Pituitary Adenomas Indicating for Immunotherapy. Journal of Neuro-Oncology, 139, 89-95.
https://doi.org/10.1007/s11060-018-2844-2
[11]  Heshmati, H.M., Kujas, M., Casanova, S., Wollan, P.C., Racadot, J., Van Effenterre, R., et al. (1998) Prevalence of Lymphocytic Infiltrate in 1400 Pituitary Adenomas. Endocrine Journal, 45, 357-361.
https://doi.org/10.1507/endocrj.45.357
[12]  Lupi, I., Manetti, L., Caturegli, P., Menicagli, M., Cosottini, M., Iannelli, A., et al. (2010) Tumor Infiltrating Lymphocytes but Not Serum Pituitary Antibodies Are Associated with poor Clinical Outcome after Surgery in Patients with Pituitary Adenoma. The Journal of Clinical Endocrinology and Metabolism, 95, 289-296.
https://doi.org/10.1210/jc.2009-1583
[13]  Lu, J.-Q., Adam, B., Jack, A.S., Lam, A., Broad, R.W. and Chik, C.L. (2015) Immune Cell Infiltrates in Pituitary Adenomas: More Macrophages in Larger Adenomas and More T Cells in Growth Hormone Adenomas. Endocrine Pathology, 26, 263-272.
https://doi.org/10.1007/s12022-015-9383-6
[14]  Sato, M., Tamura, R., Tamura, H., Mase, T., Kosugi, K., Morimoto, Y., et al. (2019) Analysis of Tumor Angiogenesis and Immune Microenvironment in Non-Functional Pituitary Endocrine Tumors. Journal of Clinical Medicine, 8, Article No. 695.
https://doi.org/10.3390/jcm8050695
[15]  Barry, S., Carlsen, E., Marques, P., Stiles, C.E., Gadaleta, E., Berney, D.M., et al. (2019) Tumor Microenvironment Defines the Invasive Phenotype of AIP-Mutation-Positive Pituitary Tumors. Oncogene, 38, 5381-5395.
https://doi.org/10.1038/s41388-019-0779-5
[16]  DeNardo, D.G. and Ruffell, B. (2019) Macrophages as Regulators of Tumour Immunity and Immunotherapy. Nature Reviews. Immunology, 19, 369-382.
https://doi.org/10.1038/s41577-019-0127-6
[17]  Mehdizadeh, S., Bayatipoor, H., Pashangzadeh, S., Jafarpour, R., Shojaei, Z. and Motallebnezhad, M. (2021) Immune Checkpoints and Cancer Development: Therapeutic Implications and Future Directions. Pathology—Research and Practice, 223, Article ID: 153485.
https://doi.org/10.1016/j.prp.2021.153485
[18]  Topalian, S.L., Taube, J.M., Anders, R.A. and Pardoll, D.M. (2016) Mechanism-Driven Biomarkers to Guide Immune Checkpoint Blockade in Cancer Therapy. Nature Reviews Cancer, 16, 275-287.
https://doi.org/10.1038/nrc.2016.36
[19]  Vathiotis, I.A., Gomatou, G., Stravopodis, D.J. and Syrigos, N. (2021) Programmed Death-Ligand 1 as a Regulator of Tumor Progression and Metastasis. International Journal of Molecular Sciences, 22, Article No. 5383.
https://doi.org/10.3390/ijms22105383
[20]  Marchetti, A., Di Lorito, A. and Buttitta, F. (2017) Why Anti-PD1/PDL1 Therapy Is So Effective? Another Piece in the Puzzle. Journal of Thoracic Disease, 9, 4863-4866.
https://doi.org/10.21037/jtd.2017.11.105
[21]  Mei, Y., Bi, W., Greenwald, N.F., Du, Z., Agar, N.Y.R., Kaiser, U.B., et al. (2016) Increased Expression of Programmed Death Ligand 1 (PD-L1) in Human Pituitary Tumors. Oncotarget, 7, 76565-76576.
https://doi.org/10.18632/oncotarget.12088
[22]  Pollack, R., Kagan, M., Dresner-Pollak, R. and Neuman, T. (2021) PD-L1 Expression in Normal Endocrine Tissues Is Not Increased Despite High Incidence of Pd-1 Inhibitor-Associated Endocrinopathies. Endocrine Practice, 27, 34-37.
https://doi.org/10.1016/j.eprac.2020.11.004
[23]  Kemeny, H.R., Elsamadicy, A.A., Harrison Farber, S., Champion, C.D., Lorrey, S.J., Chongsathidkiet, P., et al. (2020) Targeting PD-L1 Initiates Effective Antitumor Immunity in a Murine Model of Cushing Disease. Clinical Cancer Research, 26, 1141-1151.
https://doi.org/10.1158/1078-0432.CCR-18-3486
[24]  Sol, B., de Filette, J.M.K., Awada, G., Raeymaeckers, S., Aspeslagh, S., Andreescu, C.E., et al. (2021) Immune Checkpoint Inhibitor Therapy for ACTH-Secreting Pituitary Carcinoma: A New Emerging Treatment? European Journal of Endocrinology, 184, K1-K5.
https://doi.org/10.1530/EJE-20-0151

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133