全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习算法的谐振点漂移的伺服系统最优谐振抑制
Optimal Resonance Suppression of Servo System with Resonance Point Drift Based on Machine Learning Algorithm

DOI: 10.12677/JSTA.2021.94072, PP. 263-273

Keywords: 二质量系统,漂移谐振点,三分法,谐振抑制,模拟退火算法,鲁棒性,相角裕度
Two Mass System
, Drift Resonance Point, Trisection, Resonance Suppression, Simulated Annealing Algorithm, Ro-bustness, Phase Margin

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对谐振点漂移时的伺服系统谐振抑制问题,采用在伺服系统中级联一个陷波滤波器的方法对二质量系统的机械谐振进行抑制。首先,建立二质量系统的数学模型并对谐振机理进行分析,阐述机械谐振产生的原因;其次,利用三分法进行漂移谐振点的在线搜索;然后,分析陷波滤波器的原理并利用模拟退火算法确定陷波滤波器的宽度参数和深度参数;最后,在确定最优参数的基础上进行实验和系统的鲁棒性分析,实验结果表明该方法不仅能快速搜索出漂移谐振点、有效抑制谐振,保持系统的稳定性,而且避免手动调节参数耗时多的缺陷,可以准确、快速地抑制漂移谐振点。
In order to suppress the resonance of the servo system when the resonance point drifts, a notch filter is connected in the servo system to suppress the mechanical resonance of the two mass system. Firstly, the mathematical model of two mass system is established, the resonance mechanism is analyzed, and the causes of mechanical resonance are described; Secondly, the online search of drift resonance point is carried out by using the trisection method; Thirdly, the principle of notch filter is analyzed, and the width and depth parameters of notch filter are determined by simulated annealing algorithm; Then, on the basis of determining the optimal parameters, the robustness of the system is analyzed; Finally, based on the determination of the optimal parameters, experiments and system robustness analysis are carried out. The experimental results show that this method can not only quickly search the drift resonance point, effectively suppress the resonance and maintain the stability of the system, but also avoid the defect of time-consuming manual adjustment of parameters, and can accurately and quickly suppress the drift resonance point.

References

[1]  李云松, 陈小安. 精密传动系统伺服驱动机械谐振灵敏度分析[J]. 机械传动, 2017, 41(4): 24-27.
[2]  Szabat, K. and Orlowska Kowalska, T. (2007) Vibration Suppression in a Two-Mass Drive System Using PI Speed Controller and Additional Feedbacks: Comparative Study. IEEE Trans on Industrial Electronics, 54, 1193-1206.
https://doi.org/10.1109/TIE.2007.892608
[3]  Orlowska Kowalska, T. and Kaminski, M. (2009) Effectiveness of Saliency Based Methods in Optimization of Neural State Estimators of the Drive System with Elastic Couplings. IEEE Trans on Industrial Electronics, 56, 4043-4051.
https://doi.org/10.1109/TIE.2009.2027250
[4]  Katsura, S. and Ohnishi, K. (2007) Force Servoing by Flexible Manipulator Based on Resonance Ratio Control. IEEE Trans on Industrial Electronics, 54, 539-547.
https://doi.org/10.1109/TIE.2006.888805
[5]  Muszynski, R. and Deskur, J. (2010) Damping of Torsional Vibra-tions in High-Dynamic Industrial Drives. IEEE Trans on Industrial Electronics, 57, 544-552.
https://doi.org/10.1109/TIE.2009.2036034
[6]  Hace, A., Jezernik, K. and Abanovic, A. (2007) SMC with Dis-turbance Observer for a Linear Belt Drive. IEEE Trans on Industrial Electronics, 54, 3402-3412.
https://doi.org/10.1109/TIE.2007.906130
[7]  Peter, K., Schling, I. and Orlik, B. (2003) Robust Output- Feedback H∞-Control with a Nonlinear Observer for a Two- Mass System. IEEE Trans on Industry Applications, 39, 637-644.
https://doi.org/10.1109/TIA.2003.811788
[8]  Cychowski, M., Szabat, K. and Orlowska Kowalska, T. (2009) Constrained Model Predictive Control of the Drive System with Mechanical Elasticity. IEEE Trans on Industry Applica-tions, 56, 1963-1973.
https://doi.org/10.1109/TIE.2009.2015753
[9]  Zhang, G. (2000) Speed Control of Two-Inertia System by PI/PID Control. IEEE Transactions on Industrial Electronics, 47, 603-609.
https://doi.org/10.1109/41.847901
[10]  杨明, 王璨, 徐殿国. 基于轴矩限幅控制的机械谐振抑制技术[J]. 电机与控制学报, 2015, 19(4): 58-64.
[11]  熊琰, 李叶松. 基于频率特性搜索的伺服系统谐振控制[J]. 电气传动, 2015, 45(2): 39-44+80.
[12]  周凤岐, 周军, 郭建国. 现代控制理论基础[M]. 西安: 西北工业大学出版社, 2011.
[13]  Cai, L.-H., Gao, H.-B., Zhang, S.-M. and Ma, Q.-K. (2011) Research on Method of Eliminating Accurately Mechanical Resonance Frequency of the Theodolite by complex Notch Filter. 2011 International Conference on System Science, Engineering Design and Manufacturing Information, Guiyang, 22-23 October 2011, 60-63.
https://doi.org/10.1109/ICSSEM.2011.6081329
[14]  Kwan, T. and Martin, K. (1989) Adaptive Detection and En-hancement of Multiple Sinusoids Using a Cascade IIR Filter. IEEE Transactions on Circuits and Systems, 36, 937-947.
https://doi.org/10.1109/31.31329
[15]  王昱忠. 伺服系统机械谐振抑制方法的研究与实现[D]: [硕士学位论文]. 沈阳: 中国科学院大学(中国科学院沈阳计算技术研究所), 2018.
[16]  杨明, 郝亮, 徐殿国. 基于自适应陷波滤波器的在线机械谐振抑制[J]. 哈尔滨工业大学学报, 2014, 46(4): 63-69.
[17]  康健. 伺服系统机械谐振在线检测及抑制方法研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012.
[18]  Information Technology (2020) Research Data from Sharif University of Technology Update Understanding of Information Technology (Frequency Da-ta-Based Procedure to Adjust Gain and Phase Margins and Guarantee the Uniqueness of Crossover Frequencies). p. 507
[19]  陈梦沂. 模拟退火算法的改进[J]. 通化师范学院学报, 2017, 38(10): 41-44.
[20]  姚新, 陈国良. 模拟退火算法及其应用[J]. 计算机研究与发展, 1990(7): 1-6.
[21]  谢云. 模拟退火算法的原理及实现[J]. 高等学校计算数学学报, 1999(3): 212-218.
[22]  王昱忠, 何平, 王志成, 韩旭. 基于自适应陷波器的伺服系统谐振抑制[J]. 组合机床与自动化加工技术, 2019(1): 68-71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133