全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mitigating Cadmium (Cd) Toxicity in Montane Forest Soils Using Biochar: Laboratory Trial for Soils from Horton Plains, Sri Lanka

DOI: 10.4236/ojss.2021.1110025, PP. 504-520

Keywords: Forest Dieback, Soil Amendments, Cadmium, Biochar, Natural Geosorbents

Full-Text   Cite this paper   Add to My Lib

Abstract:

Horton Plains (HP), one of the two montane forests in Sri Lanka and habitat to many endemic species of plants and animals, has been severely affected by forest dieback. Past research has identified a direct link between soil pollution with Cadmium (Cd) and the phenomenon of forest dieback. As a consequence, forest dieback is increasing proportionately to the soil pollution. Hence, this study focuses on identifying a cost-effective remediation technique to neutralize soil Cd, and thereby reducing forest dieback. Soil samples were collected from HP, mainly Thotupolakanda site which shows more than 90% severity of forest die back, and bulked together. The soil was high (13.4) in organic matter and low (5.42) in pH, and three soil amendments were tested in this research as; bio char prepared using 1) rubber nut shells, 2) rice husk, and 3) dead wood from HP. Each sample was spiked with 20 ml of 5 ppm (parts per million) Cd solution, and four treatments a) soil + rubber-nut shell biochar (T1), b) soil + rice husk biochar (T2), c) soil + wood-from-HP biochar (T3), and d) soil only (T4), with five (05) replicates, were setup. During the first eight weeks after the application of treatments, it was observed that T1 showed the best performance, by showing a consistent trend in reducing the available soil Cd, with T2 following closely. The interesting observation was that the natural forest soil (T4) was also able to buffer the loading of Cd. At the close of the experiment, it was observed that the available soil Cd goes almost to zero, in less than 24 months.

References

[1]  Perera, W.R.H. (1978) Thotupolakanda—An Environmental Disaster? Sri Lanka Forester, 13, 53-55.
[2]  Ranasinghe, P.N., Dissanayake, C.B., Samarasinghe, D.V.N. and Galappatti, R. (2007) The Relationship between Soil Geochemistry and Die Back of Montane Forests in Sri Lanka: A Case Study. Environmental Geology, 51, 1077-1088.
https://doi.org/10.1007/s00254-006-0399-6
[3]  Chandrajith, R. and Dissanayake, C.B. (2009) Phosphate Mineral Fertilizers, Trace Metals and Human Health. Journal of the National Science Foundation of Sri Lanka, 37, 153-165.
https://doi.org/10.4038/jnsfsr.v37i3.1219
[4]  Chibuike, G.U. and Obiora, S.C. (2014) Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied and Environmental Soil Science, 2014, 12 p.
https://doi.org/10.1155/2014/752708
[5]  Adriano, D.C. (2001) Bioavailability of Trace Metals. In: Trace Elements in Terrestrial Environments, Springer, New York, 61-89.
https://doi.org/10.1007/978-0-387-21510-5_3
[6]  Moreno, J., Bastida, F., Ros, M., Hernández, T. and García, C. (2009) Soil Organic Carbon Buffers Heavy Metal Contamination on Semiarid Soils: Effects of Different Metal Threshold Levels on Soil Microbial Activity. European Journal of Soil Biology, 45, 220-228.
https://doi.org/10.1016/j.ejsobi.2009.02.004
[7]  Rajapaksha, P.R.U., Nandasena, K.A., Gunawardena, E.R.N. and Rosier, P.T.W. (1996) Water Quality Parameters of Fog, Rain, Throughfall and Stream Water at Horton Plains Forestry Symposium—Sri Jayawardhanapura University, Sri Jayawardhanapura University.
[8]  Lombi, E., Zhao, F.J., Dunham, S.J. and McGrath, S.P. (2001) Phytoremediation of Heavy Metal-Contaminated Soil. Journal of Environmental Quality, 30, 1919-1926.
https://doi.org/10.2134/jeq2001.1919
[9]  Yapa, P.I. (2015) Soil Chemical Quality and Forest Die-Back. International Journal of Environmental Science and Development, 6, 1-8.
https://doi.org/10.7763/IJESD.2015.V6.551
[10]  Loope, L.L. and Giambelluca, T.W. (1998) Vulnerability of Island Tropical Montane Cloud Forests to Climate Change, with Special Reference to East Maui, Hawaii. Climate Change, 39, 503-517.
https://doi.org/10.1023/A:1005372118420
[11]  Lehmann, J. and Joseph, S. (2009) Biochar for Environmental Management: An Introduction. Routledge, 33-46.
[12]  Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H. and Yang, L. (2014) Effects of Feedstock Type, Production Method, and Pyrolysis Temperature on Biochar and Hydrochar Properties. Chemical Engineering Journal, 240, 574-578.
https://doi.org/10.1016/j.cej.2013.10.081
[13]  Ronsse, F., Van Hecke, S., Dickinson, D. and Prins, W. (2013) Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy, 5, 104-115.
https://doi.org/10.1111/gcbb.12018
[14]  Subedi, R., Taupe, N., Pelissetti, S., Petruzzelli, L., Bertora, C., Leahy, J.J. and Grignani, C. (2016) Greenhouse Gas Emissions and Soil Properties Following Amendment with Manure-Derived Biochars: Influence of Pyrolysis Temperature and Feedstock Type. Journal of Environmental Management, 166, 73-83.
https://doi.org/10.1016/j.jenvman.2015.10.007
[15]  Ma, J., Wang, H. and Luo, Q. (2007) Movement-Adsorption and Its Mechanism of Cd in Soil under Combining Effects of Electrokinetics and a New Type of Bamboo Charcoal. Environmental Science, 28, 1829-1834.
[16]  Beesley, L., Moreno-Jiménez, E. and Gomez-Eyles, J.L. (2010) Effects of Biochar and Greenwaste Compost Amendments on Mobility, Bioavailability and Toxicity of Inorganic and Organic Contaminants in a Multi-Element Polluted Soil. Environmental Pollution, 158, 2282-2287.
https://doi.org/10.1016/j.envpol.2010.02.003
[17]  Beesley, L. and Marmiroli, M. (2011) The Immobilisation and Retention of Soluble Arsenic, Cadmium and Zinc by Biochar. Environmental Pollution, 159, 474-480.
https://doi.org/10.1016/j.envpol.2010.10.016
[18]  Debela, F., Thring, R. and Arocena, J. (2012) Immobilization of Heavy Metals by Co-Pyrolysis of Contaminated Soil with Woody Biomass. Water, Air, & Soil Pollution, 223, 1161-1170.
https://doi.org/10.1007/s11270-011-0934-2
[19]  Keiluweit, M., Nico, P.S., Johnson, M.G. and Kleber, M. (2010) Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 44, 1247-1253.
https://doi.org/10.1021/es9031419
[20]  Di Toppi, L.S. and Gabbrielli, R. (1999) Response to Cadmium in Higher Plants. Environmental and Experimental Botany, 41, 105-130.
https://doi.org/10.1016/S0098-8472(98)00058-6
[21]  Nazar, R., Iqbal, N., Masood, A., Khan, M.I.R., Syeed, S. and Khan, N.A. (2012) Cadmium Toxicity in Plants and Role of Mineral Nutrients in Its Alleviation. American Journal of Plant Sciences, 3, 1476-1489.
https://doi.org/10.4236/ajps.2012.310178
[22]  Dias, M.C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Goncalves, B. and Santos, C. (2013) Cadmium Toxicity Affects Photosynthesis and Plant Growth at Different Levels. Acta Physiologiae Plantarum, 35, 1281-1289.
https://doi.org/10.1007/s11738-012-1167-8
[23]  de Araújo, R.P., de Almeida, A.-A.F., Pereira, L.S., Mangabeira, P.A., Souza, J.O., Pirovani, C.P., Ahnert, D. and Baligar, V.C. (2017) Photosynthetic, Antioxidative, Molecular and Ultrastructural Responses of Young Cacao Plants to Cd Toxicity in the Soil. Ecotoxicology and Environmental Safety, 144, 148-157.
https://doi.org/10.1016/j.ecoenv.2017.06.006
[24]  Rizwan, M., Ali, S., Adrees, M., Ibrahim, M., Tsang, D.C., Zia-ur-Rehman, M., Zahir, Z.A., Rinklebe, J., Tack, F.M. and Ok, Y.S. (2017) A Critical Review on Effects, Tolerance Mechanisms and Management of Cadmium in Vegetables. Chemosphere, 182, 90-105.
https://doi.org/10.1016/j.chemosphere.2017.05.013
[25]  Nagajyoti, P.C., Lee, K.D. and Sreekanth, T. (2010) Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environmental Chemistry Letters, 8, 199-216.
https://doi.org/10.1007/s10311-010-0297-8
[26]  Park, J.H., Choppala, G., Lee, S.J., Bolan, N., Chung, J.W. and Edraki, M. (2013) Comparative Sorption of Pb and Cd by Biochars and Its Implication for Metal Immobilization in Soils. Water, Air, & Soil Pollution, 224, Article No. 1711.
https://doi.org/10.1007/s11270-013-1711-1
[27]  Venegas, A., Rigol, A. and Vidal, M. (2015) Viability of Organic Wastes and Biochars as Amendments for the Remediation of Heavy Metal-Contaminated Soils. Chemosphere, 119, 190-198.
https://doi.org/10.1016/j.chemosphere.2014.06.009
[28]  Zhang, Z., Solaiman, Z.M., Meney, K., Murphy, D.V. and Rengel, Z. (2013) Biochars Immobilize Soil Cadmium, but Do Not Improve Growth of Emergent Wetland Species Juncus subsecundus in Cadmium-Contaminated Soil. Journal of Soils and Sediments, 13, 140-151.
https://doi.org/10.1007/s11368-012-0571-4
[29]  Chi, T., Zuo, J. and Liu, F. (2017) Performance and Mechanism for Cadmium and Lead Adsorption from Water and Soil by Corn Straw Biochar. Frontiers of Environmental Science & Engineering, 11, Article No. 15.
https://doi.org/10.1007/s11783-017-0921-y
[30]  Trakal, L., Bingol, D., Pohorely, M., Hruska, M. and Komárek, M. (2014) Geochemical and Spectroscopic Investigations of Cd and Pb Sorption Mechanisms on Contrasting Biochars: Engineering Implications. Bioresource Technology, 171, 442-451.
https://doi.org/10.1016/j.biortech.2014.08.108
[31]  Paranavithana, G., Kawamoto, K., Inoue, Y., Saito, T., Vithanage, M., Kalpage, C. and Herath, G. (2016) Adsorption of Cd2+ and Pb2+ onto Coconut Shell Biochar and Biochar-Mixed Soil. Environmental Earth Sciences, 75, Article No. 484.
https://doi.org/10.1007/s12665-015-5167-z
[32]  Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C. and Crowley, D. (2011) Biochar Effects on Soil Biotae—A Review. Soil Biology & Biochemistry, 43, 1812-1836.
https://doi.org/10.1016/j.soilbio.2011.04.022
[33]  Sohi, S.P., Krull, E., Lopez-Capel, E. and Bol, R. (2010) A Review of Biochar and Its Use and Function in Soil. Advances in Agronomy, 105, 47-82.
https://doi.org/10.1016/S0065-2113(10)05002-9
[34]  Liu, Z. and Zhang, F.-S. (2009) Removal of Lead from Water Using Biochars Prepared from Hydrothermal Liquefaction of Biomass. Journal of Hazardous Materials, 167, 933-939.
https://doi.org/10.1016/j.jhazmat.2009.01.085
[35]  Pellera, F.-M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J.-Y. and Gidarakos, E. (2012) Adsorption of Cu(II) Ions from Aqueous Solutions on Biochars Prepared from Agricultural By-Products. Journal of Environmental Management, 96, 35-42.
https://doi.org/10.1016/j.jenvman.2011.10.010
[36]  Annadurai, G., Juang, R.-S. and Lee, D. (2003) Adsorption of Heavy Metals from Water Using Banana and Orange Peels. Water Science and Technology, 47, 185-190.
https://doi.org/10.2166/wst.2003.0049
[37]  Lehmann, J., Gaunt, J. and Rondon, M. (2006) Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitigation and Adaptation Strategies for Global Change, 11, 403-427.
https://doi.org/10.1007/s11027-005-9006-5
[38]  Kuzyakov, Y., Bogomolova, I. and Glaser, B. (2014) Biochar Stability in Soil: Decomposition during Eight Years and Transformation as Assessed by Compound-Specific 14C Analysis. Soil Biology and Biochemistry, 70, 229-236.
https://doi.org/10.1016/j.soilbio.2013.12.021
[39]  Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., Zhang, A., Rutlidge, H., Wong, S. and Chia, C. (2014) A Three-Year Experiment Confirms Continuous Immobilization of Cadmium and Lead in Contaminated Paddy Field with Biochar Amendment. Journal of Hazardous Materials, 272, 121-128.
https://doi.org/10.1016/j.jhazmat.2014.03.017
[40]  Yuan, J.H. and Xu, R.K. (2011) The Amelioration Effects of Low Temperature Biochar Generated from Nine Crop Residues on an Acidic Ultisol. Soil Use and Management, 27, 110-115.
https://doi.org/10.1111/j.1475-2743.2010.00317.x
[41]  Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A. and Lima, I.M. (2011) Influence of Pyrolysis Temperature on Biochar Property and Function as a Heavy Metal Sorbent in Soil. Journal of Agricultural and Food Chemistry, 59, 2501-2510.
https://doi.org/10.1021/jf104206c
[42]  Cao, X., Wahbi, A., Ma, L., Li, B. and Yang, Y. (2009) Immobilization of Zn, Cu, and Pb in Contaminated Soils Using Phosphate Rock and Phosphoric Acid. Journal of Hazardous Materials, 164, 555-564.
https://doi.org/10.1016/j.jhazmat.2008.08.034
[43]  Harvey, O.R., Herbert, B.E., Rhue, R.D. and Kuo, L.-J. (2011) Metal Interactions at the Biochar-Water Interface: Energetics and Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry. Environmental Science & Technology, 45, 5550-5556.
https://doi.org/10.1021/es104401h
[44]  Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H. and Soja, G. (2012) Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties. Journal of Environmental Quality, 41, 990-1000.
https://doi.org/10.2134/jeq2011.0070
[45]  Zhao, L., Cao, X., Masek, O. and Zimmerman, A. (2013) Heterogeneity of Biochar Properties as a Function of Feedstock Sources and Production Temperatures. Journal of Hazardous Materials, 256-257, 1-9.
https://doi.org/10.1016/j.jhazmat.2013.04.015
[46]  Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S. and Ok, Y.S. (2014) Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere, 99, 19-33.
https://doi.org/10.1016/j.chemosphere.2013.10.071
[47]  Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J.L., Harris, E., Robinson, B. and Sizmur, T. (2011) A Review of Biochars’ Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils. Environmental Pollution, 159, 3269-3282.
https://doi.org/10.1016/j.envpol.2011.07.023
[48]  Rizwan, M., Ali, S., Rizvi, H., Rinklebe, J., Tsang, D.C., Meers, E., Ok, Y.S. and Ishaque, W. (2016) Phytomanagement of Heavy Metals in Contaminated Soils Using Sunflower: A Review. Critical Reviews in Environmental Science and Technology, 46, 1498-1528.
https://doi.org/10.1080/10643389.2016.1248199
[49]  Whitmore, T. (1984) Tropical Rainforests of the Far East, 2nd Edition, Clarendon Press, Oxford.
[50]  Jayasekara, R.D.B. (1970) Horton Plains. Loris, 12, 79-81.
[51]  Hendershot, W.H., Lalande, H. and Duquette, M. (2006) Soil Reaction and Exchangable Acidity. In: Soon, Y.K. and Hendershot, W.H., Eds., Soil Sampling and Methods of Analysis, CRC Press; Boca Raton, 141-146.
[52]  Kroetsch, D. and Wang, C. (2008) Particle Size Distribution. In: Angers, D.A. and Larney, F.J., Eds., Soil Sampling and Methods of Analysis, CRC Press, Boca Raton, 713-725.
[53]  Miller, J.J. and Curtin, D. (2006) Electrical Conductivity and Soluble Ions. In: Schoenau, J.J. and O’Holloran, I.P., Eds., Soil Sampling and Methods of Analysis, CRC Press, Boca Raton, 187-197.
[54]  Simpson, M.J. and Preston, C. (2006) Soil Organic Matter Analysis by Solid-State 13C Nuclear Magnetic Resonance Spectroscopy. In: Gregorich, E.G. and Beare, M.H., Eds., Soil Sampling and Methods of Analysis, CRC Press, Boca Raton, 681-692.
[55]  Whitten, M. and Ritchie, G. (1991) Calcium Chloride Extractable Cadmium as an Estimate of Cadmium Uptake by Subterranean Clover. Australian Journal of Soil Research, 29, 215-221.
https://doi.org/10.1071/SR9910215
[56]  Sauerbeck, D. and Styperek, P. (1985) Evaluation of Chemical Methods for Assessing the Cd and Zn Availability from Different Soils and Sources. In: Chemical Methods for Assessing Bio-Available Metals in Sludges and Soils, Elsevier Applied Science, London, 49-67.
[57]  Symeonides, C. and McRae, S. (1977) The Assessment of Plant-Available Cadmium in Soils. Journal of Environmental Quality, 6, 120-123.
https://doi.org/10.2134/jeq1977.00472425000600020003x
[58]  Weil, R. and Brady, N. (2016) Soil Phosphorus and Potassium. In: Weil, R.R. and Brady, N.C., Eds., The Nature and Properties of Soils, 15th Edition, Pearson Education, Upper Saddle River, 643-693.
[59]  Osman, K.T. (2013) Physical Properties of Forest Soils. In: Forest Soils. Springer, Cham, 229-251.
[60]  Katerji, N., Van Hoorn, J., Hamdy, A. and Mastrorilli, M. (2000) Salt Tolerance Classification of Crops According to Soil Salinity and to Water Stress Day Index. Agricultural Water Management, 43, 99-109.
https://doi.org/10.1016/S0378-3774(99)00048-7
[61]  Schrumpf, M., Guggenberger, G., Valarezo, C. and Zech, W. (2001) Tropical Montane Rain Forest Soils. Development and Nutrient Status along Altitudinal Gradient in the South Ecuadorian Andes. Die Erde: Zeitschrift der Gesellschaft für Erdkunde zu Berlin, 132, 43-59.
[62]  Hetsch, W. (1976) Standorts-und Vegetationsgliederung in einem tropischen Nebelwald [Location and Vegetation Breakdown in a Tropical Cloud Forest]. Forst Jagdzg, 147, 200-209.
[63]  Havlin, J., Hardy, D., Gehl, R. and Spayd, S. (2012) Survey of Nutrient Status in Vitis Vinifera Grapes in North Carolina. Communications in Soil Science and Plant Analysis, 43, 299-314.
https://doi.org/10.1080/00103624.2011.638600
[64]  Nawaz, R., Parkpian, P., Garivait, H., Anurakpongsatorn, P., DeLaune, R. and Jugsujinda, A. (2012) Impacts of Acid Rain on Base Cations, Aluminum, and Acidity Development in Highly Weathered Soils of Thailand. Communications in Soil Science and Plant Analysis, 43, 1382-1400.
https://doi.org/10.1080/00103624.2012.670347
[65]  Chin, B.L.F., Yusup, S., Al Shoaibi, A., Kannan, P., Srinivasakannan, C. and Sulaiman, S.A. (2014) Kinetic Studies of Co-Pyrolysis of Rubber Seed Shell with High Density Polyethylene. Energy Conversion and Management, 87, 746-753.
https://doi.org/10.1016/j.enconman.2014.07.043
[66]  Lindholm-Lehto, P.C. (2019) Biosorption of Heavy Metals by Lignocellulosic Biomass and Chemical Analysis. BioResources, 14, 4952-4995.
[67]  McBride, M. (2012) Reactions Controlling Heavy Metal Solubility. In: Stewart, B.A., Ed., Advances in Soil Science, Vol. 10, Springer, New York, 1-56.
https://doi.org/10.1007/978-1-4613-8847-0_1
[68]  Sposito, G. (2012) Solute Lifetime Correlations in Chemical Transport through Field Soils. In: Russo D. and Dagan G., Eds., Water Flow and Solute Transport in Soils, Vol. 20, Springer, Berlin, 82-95.
https://doi.org/10.1007/978-3-642-77947-3_7
[69]  Grafe, M., Singh, B. and Balasubramanian, M. (2007) Surface Speciation of Cd (II) and Pb (II) on Kaolinite by XAFS Spectroscopy. Journal of Colloid and Interface Science, 315, 21-32.
https://doi.org/10.1016/j.jcis.2007.05.022
[70]  Serrano, S., O’Day, P.A., Vlassopoulos, D., García-González, M.T. and Garrido, F. (2009) A Surface Complexation and Ion Exchange Model of Pb and Cd Competitive Sorption on Natural Soils. Geochimica et Cosmochimica Acta, 73, 543-558.
https://doi.org/10.1016/j.gca.2008.11.018
[71]  Loganathan, P., Vigneswaran, S., Kandasamy, J. and Naidu, R. (2012) Cadmium Sorption and Desorption in Soils: A Review. Critical Reviews in Environmental Science and Technology, 42, 489-533.
https://doi.org/10.1080/10643389.2010.520234
[72]  Gray, C., McLaren, R., Roberts, A. and Condron, L. (1999) Effect of Soil pH on Cadmium Phytoavailability in Some New Zealand Soils. New Zealand Journal of Crop and Horticultural Science, 27, 169-179.
https://doi.org/10.1080/01140671.1999.9514093
[73]  Degryse, F., Smolders, E. and Parker, D. (2009) Partitioning of Metals (Cd, Co, Cu, Ni, Pb, Zn) in Soils: Concepts, Methodologies, Prediction and Applications—A Review. European Journal of Soil Science, 60, 590-612.
https://doi.org/10.1111/j.1365-2389.2009.01142.x
[74]  Park, J.H., Choppala, G.K., Bolan, N.S., Chung, J.W. and Chuasavathi, T. (2011) Biochar Reduces the Bioavailability and Phytotoxicity of Heavy Metals. Plant and Soil, 348, Article No. 439.
https://doi.org/10.1007/s11104-011-0948-y
[75]  Hartley, W., Riby, P. and Waterson, J. (2016) Effects of Three Different Biochars on Aggregate Stability, Organic Carbon Mobility and Micronutrient Bioavailability. Journal of Environmental Management, 181, 770-778.
https://doi.org/10.1016/j.jenvman.2016.07.023
[76]  Walker, D.J., Clemente, R. and Bernal, M.P. (2004) Contrasting Effects of Manure and Compost on Soil pH, Heavy Metal Availability and Growth of Chenopodium album L. in a Soil Contaminated by Pyritic Mine Waste. Chemosphere, 57, 215-224.
https://doi.org/10.1016/j.chemosphere.2004.05.020
[77]  Alvarenga, P., Goncalves, A., Fernandes, R., De Varennes, A., Vallini, G., Duarte, E. and Cunha-Queda, A. (2009) Organic Residues as Immobilizing Agents in Aided Phytostabilization: (I) Effects on Soil Chemical Characteristics. Chemosphere, 74, 1292-1300.
https://doi.org/10.1016/j.chemosphere.2008.11.063

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133