全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Malaria and Lymphatic Filariasis Co-Transmission in Endemic Health Districts in Burkina Faso

DOI: 10.4236/ae.2021.94014, PP. 155-175

Keywords: Wuchereria bancrofti, Plasmodium falciparum, Mosquitoes, Co-Infection

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: Lymphatic filariasis (LF) and malaria are two vector-borne diseases which parasites can simultaneously infect human or mosquito. In Burkina Faso, studies mainly focused on the control of these diseases independently. Hence, there is a lack of information on their co-transmission of to both human and vector. The present study aimed at providing baseline data from endemic areas in Burkina Faso towards a successful integrated management of both diseases. Methods: The study was carried out in six sites distributed in the East, Center-East and South-West regions of Burkina Faso. Data were collected in August 2014 and September 2015. The infection rates in human and vector populations, vector diversity, trophic and resting behavior were investigated. To determine the disease prevalence nocturnal finger- prick blood sample and microscopic observations were performed. Vectors collected by human landing catches and pyrethrum spray collections. Biochemical and molecular analyses were performed to identify Anopheles gambiae sensu lato sibling species, and to determine vector infection rate and their blood meal origins. Results: Results indicate residual transmission of LF and malaria in human and vector populations. A low co-infection rate (<1%) with Wuchereria bancrofti and

References

[1]  World Health Organization (2019) World Malaria Report 2019. Report No. 978-92-4-156572-1, World Health Organization, Geneva, 232 p.
https://www.who.int/publications-detail-redirect/9789241565721
[2]  Kamgno, J. and Djeunga, H.N. (2020) Progress towards Global Elimination of Lymphatic Filariasis. The Lancet Global Health, 8, e1108-e1109.
https://doi.org/10.1016/S2214-109X(20)30323-5
[3]  Tandina, F., Doumbo, O., Traoré, S.F., Parola, P. and Robert, V. (2018) Mosquitoes (Diptera: Culicidae) and Mosquito-Borne Diseases in Mali, West Africa. Parasites & vectors, 11, Article No. 467.
https://doi.org/10.1186/s13071-018-3045-8
[4]  Manguin, S., Bangs, M.J., Pothikasikorn, J. and Chareonviriyaphap, T. (2010) Review on Global Co-Transmission of Human Plasmodium Species and Wuchereria bancrofti by Anopheles Mosquitoes. Infection, Genetics and Evolution, 10, 159-177.
https://doi.org/10.1016/j.meegid.2009.11.014
[5]  Stanton, M.C., Molyneux, D.H., Kyelem, D., Bougma, R.W., Koudou, B.G. and Kelly-Hope, L.A. (2013) Baseline Drivers of Lymphatic Filariasis in Burkina Faso. Geospatial Health, 8, 159-173.
https://doi.org/10.4081/gh.2013.63
[6]  Stone, C.M., Lindsay, S.W. and Chitnis, N. (2014) How Effective Is Integrated Vector Management against Malaria and Lymphatic Filariasis Where the Diseases Are Transmitted by the Same Vector? Carabin, H., editor. PLoS Neglected Tropical Diseases, 8, Article ID: e3393.
https://doi.org/10.1371/journal.pntd.0003393
[7]  Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., et al. (2015) The Effect of Malaria Control on Plasmodium falciparum in Africa between 2000 and 2015. Nature, 526, 207-211.
https://doi.org/10.1038/nature15535
[8]  NTD Modelling Consortium Lymphatic Filariasis Group (2019) The Roadmap towards Elimination of Lymphatic Filariasis by 2030: Insights from Quantitative and Mathematical Modelling. Gates Open Research, 3, Article No. 1538.
https://doi.org/10.12688/gatesopenres.13065.1
[9]  Kima, A., Guiguemde, K.T., Meda, Z.C., Bougma, R., Serme, M., Bougouma, C., et al. (2019) évaluation de l’impact du traitement médicamenteux de masse contre la filariose lymphatique dans 3 districts sanitaires et implication en santé publique: à propos de 12 sites de surveillance épidémiologique au Burkina Faso. Médecine et Santé Tropicales, 29, 55-60.
[10]  Ouedraogo, A.N., Somda, E.B., Traoré, F., Ouédraogo, M.S., Tapsoba, G.P., Ouangre/ Ouédraogo, A., et al. (2016) Impact du traitement de masse de la filariose lymphatique par l’albendazole-ivermectine en zone de savane: Cas de la région de l’Est du Burkina. Health Sciences and Disease, 17, 16-21.
https://hsd-fmsb.org/index.php/hsd/article/view/731
[11]  Hien, A.S., Soma, D.D., Sawadogo, S.P., Poda, S.B., Namountougou, M., Ouédraogo, G.A., et al. (2020) Effect of Bendiocarb (Ficam® 80% WP) on Entomological Indices of Malaria Transmission by Indoor Residual Spraying in Burkina Faso, West Africa. Advances in Entomology, 8, 158-178.
https://doi.org/10.4236/ae.2020.84012
[12]  Sanou. A. (2020) The Ecology and Behaviour of Insecticide Resistant Malaria Vectors and Implications for Control in Burkina Faso. PhD Thesis, University of Glasgow, Glasgow.
[13]  Some, A., Zongo, I., N’cho Tchiekoi, B., Soma, D.D., Zogo, B., Ouattara, M., et al. (2020) Epidemiology of Malaria in an Area with Pyrethroid-Resistant Vectors in South-Western Burkina Faso: A Pre-Intervention Study. medRxiv. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
[14]  Bockarie, M.J., Pedersen, E.M., White, G.B. and Michael, E. (2009) Role of Vector Control in the Global Program to Eliminate Lymphatic Filariasis. Annual Review of Entomology, 54, 469-487.
https://doi.org/10.1146/annurev.ento.54.110807.090626
[15]  van den Berg, H., Kelly-Hope, L.A. and Lindsay, S.W. (2013) Malaria and Lymphatic Filariasis: The Case for Integrated Vector Management. The Lancet Infectious Diseases, 13, 89-94.
https://doi.org/10.1016/S1473-3099(12)70148-2
[16]  Bockarie, M.J., Tavul, L., Kastens, W., Michael, E. and Kazura, J.W. (2002) Impact of Untreated Bednets on Prevalence of Wuchereria bancrofti Transmitted by Anopheles farauti in Papua New Guinea. Medical and Veterinary Entomology, 16, 116-119.
https://doi.org/10.1046/j.0269-283x.2002.00352.x
[17]  Burkot, T.R., Garner, P., Paru, R., Dagoro, H., Barnes, A., McDougall, S., et al. (1990) Effects of Untreated Bed Nets on the Transmission of Plasmodium falciparum, P. vivax and Wuchereria bancrofti in Papua New Guinea. Transactions of the Royal Society of Tropical Medicine and Hygiene, 84, 773-739.
https://doi.org/10.1016/0035-9203(90)90073-N
[18]  Webber, R.H. (1979) Eradication of Wuchereria bancrofti Infection through Vector Control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 73, 722-724.
https://doi.org/10.1016/0035-9203(79)90031-2
[19]  Moiroux, N., Gomez, M.B., Pennetier, C., Elanga, E., Djènontin, A., Chandre, F., et al. (2012) Changes in Anopheles funestus Biting Behavior Following Universal Coverage of Long-Lasting Insecticidal Nets in Benin. The Journal of Infectious Diseases, 206, 1622-1629.
https://doi.org/10.1093/infdis/jis565
[20]  Riehle, M.M., Guelbeogo, W.M., Gneme, A., Eiglmeier, K., Holm, I., Bischoff, E., et al. (2011) A Cryptic Subgroup of Anopheles gambiae Is Highly Susceptible to Human Malaria Parasites. Science, 331, 596-598.
https://doi.org/10.1126/science.1196759
[21]  Dabiré, K.R., Baldet, T., Diabaté, A., Dia, I., Costantini, C., Cohuet, A., et al. (2007) Anopheles funestus (Diptera: Culicidae) in a Humid Savannah Area of Western Burkina Faso: Bionomics, Insecticide Resistance Status, and Role in Malaria Transmission. Journal of Medical Entomology, 44, 990-997.
https://doi.org/10.1093/jmedent/44.6.990
[22]  Hien, A.S., Sangaré, I., Coulibaly, S., Namountougou, M., Paré-Toé, L, Ouédraogo, A.G., et al. (2017) Parasitological Indices of Malaria Transmission in Children under Fifteen Years in Two Ecoepidemiological Zones in Southwestern Burkina Faso. Journal of Tropical Medicine, 2017, Article ID: 1507829.
https://doi.org/10.1155/2017/1507829
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327772/
[23]  Murray, G.P., Lissenden, N., Jones, J., Voloshin, V., Toé, K.H., Sherrard-Smith, E., et al. (2020) Barrier Bednets Target Malaria Vectors and Expand the Range of Usable Insecticides. Nature Microbiology, 5, 40-47.
https://doi.org/10.1038/s41564-019-0607-2
[24]  Gillies, M.T. and Coetzee, M. (1987) A Supplement to the Anophelinae of Africa South of the Sahara. South African Institute for Medical Research, Johannesburg, Publication No. 55, 1-143.
[25]  Detinova, T.S. (1962) Age-Grouping Methods in Diptera of Medical Importance with Special Reference to Some Vectors of Malaria. World Health Organization, Geneva.
[26]  Beier, J.C., Perkins, P.V., Wirtz, R.A., Koros, J., Diggs, D., Gargan, T.P., et al. (1988) Bloodmeal Identification by Direct Enzyme-Linked Immunosorbent Assay (Elisa), Tested on Anopheles (Diptera: Culicidae) in Kenya. Journal of Medical Entomology, 25, 9-16.
https://doi.org/10.1093/jmedent/25.1.9
[27]  Santolamazza, F., Mancini, E., Simard, F., Qi, Y., Tu, Z. and della Torre, A. (2008) Insertion Polymorphisms of SINE200 Retrotransposons within Speciation Islands of Anopheles gambiae Molecular forms. Malaria Journal, 7, Article No. 163.
https://doi.org/10.1186/1475-2875-7-163
[28]  Farid, H.A., Hammad, R.E., Hassan, M.M., Morsy, Z.S., Kamal, I.H., Weil, G.J., et al. (2001) Detection of Wuchereria bancrofti in Mosquitoes by the Polymerase Chain Reaction: A Potentially Useful Tool for Large-Scale Control Programmes. Transactions of the Royal Society of Tropical Medicine and Hygiene, 95, 29-32.
https://doi.org/10.1016/S0035-9203(01)90322-0
[29]  Morassin, B., Fabre, R., Berry, A. and Magnaval, J.F. (2002) One Year’s Experience with the Polymerase Chain Reaction as a Routine Method for the Diagnosis of Imported Malaria. The American Journal of Tropical Medicine and Hygiene, 66, 503-508.
[30]  Takagi, H., Itoh, M., Kasai, S., Yahathugoda, T.C., Weerasooriya, M.V. and Kimura, E. (2011) Development of Loop-Mediated Isothermal Amplification Method for Detecting Wuchereria bancrofti DNA in Human Blood and Vector Mosquitoes. Parasitology International, 60, 493-497.
https://doi.org/10.1016/j.parint.2011.08.018
[31]  Katholi, C.R., Toé, L., Merriweather, A. and Unnasch, T.R. (1995) Determining the Prevalence of Onchocerca volvulus Infection in Vector Populations by Polymerase Chain Reaction Screening of Pools of Black Flies. The Journal of Infectious Diseases, 172, 1414-1417.
https://doi.org/10.1093/infdis/172.5.1414
[32]  Gonçalves, B.P., Kapulu, M.C., Sawa, P., Guelbéogo, W.M., Tiono, A.B., Grignard, L., et al. (2017) Examining the Human Infectious Reservoir for Plasmodium Falciparum Malaria in Areas of Differing Transmission Intensity. Nature Communications, 8, Article No. 1133.
https://doi.org/10.1038/s41467-017-01270-4
[33]  Chaccour, C., Hammann, F. and Rabinovich, N.R. (2017) Ivermectin to Reduce Malaria Transmission I. Pharmacokinetic and Pharmacodynamic Considerations Regarding Efficacy and Safety. Malaria Journal, 16, Article No. 161.
https://doi.org/10.1186/s12936-017-1801-4
[34]  Kobylinski, K.C., Sylla, M., Chapman, P.L., Sarr, M.D. and Foy, B.D. (2011) Ivermectin Mass Drug Administration to Humans Disrupts Malaria Parasite Transmission in Senegalese villages. American Journal of Tropical Medicine and Hygiene, 85, 3-5.
https://doi.org/10.4269/ajtmh.2011.11-0160
[35]  Ashton, R.A., Kyabayinze, D.J., Opio, T., Auma, A., Edwards, T., Matwale, G., et al. (2011) The Impact of Mass Drug Administration and Long-Lasting Insecticidal Net Distribution on Wuchereria bancrofti Infection in Humans and Mosquitoes: An Observational Study in Northern Uganda. Parasites & Vectors, 4, Article No. 134.
https://doi.org/10.1186/1756-3305-4-134
[36]  Soma, D.D., Zogo, B.M., Somé, A., Tchiekoi, B.N., Hien, D.F.deS., Pooda, H.S., et al. (2020) Anopheles Bionomics, Insecticide Resistance and Malaria Transmission in Southwest Burkina Faso: A Pre-Intervention Study. PLoS ONE, 15, Article ID: e0236920.
https://doi.org/10.1371/journal.pone.0236920
[37]  de Souza, D.K., Koudou, B., Kelly-Hope, L.A., Wilson, M.D., Bockarie, M.J. and Boakye, D.A. (2012) Diversity and Transmission Competence in Lymphatic Filariasis Vectors in West Africa, and the Implications for Accelerated Elimination of Anopheles-Transmitted Filariasis. Parasites & Vectors, 5, Article No. 259.
https://doi.org/10.1186/1756-3305-5-259
[38]  Koudou, B.G., de Souza, D.K., Biritwum, N.-K., Bougma, R., Aboulaye, M., Elhassan, E., et al. (2018) Elimination of Lymphatic Filariasis in West African Urban Areas: Is Implementation of Mass Drug Administration Necessary? The Lancet Infectious Diseases, 18, e214-e220.
https://doi.org/10.1016/S1473-3099(18)30069-0
[39]  Millen, D.B. (1986) A Strategy for Personal and Community Protection against the Vectors of Malaria in Papua New Guinea with Emphasis on the Evaluation of Bednets Impregnated with Permethrin. PhD Thesis, Department of Biological Sciences, Simon Fraser University, Burnaby.
[40]  Muturi, E.J., Mbogo, C.M., Ng’ang’a, Z.W., Kabiru, E.W., Mwandawiro, C., Novak, R.J., et al. (2006) Relationship between Malaria and Filariasis Transmission Indices in an Endemic Area along the Kenyan Coast. Journal of Vector Borne Diseases, 43, 77-83.
[41]  Ossè, R.A., Tokponnon, F., Padonou, G.G., Sidick, A., Aïkpon, R., Fassinou, A., et al. (2019) Involvement of Anopheles nili in Plasmodium falciparum Transmission in North Benin. Malaria Journal, 18, Article No. 152.
https://doi.org/10.1186/s12936-019-2792-0
[42]  Pi-Bansa, S., Osei, J.H.N., Frempong, K.K., Elhassan, E., Akuoko, O.K., Agyemang, D., et al. (2019) Potential Factors Influencing Lymphatic Filariasis Transmission in “Hotspot” and “Control” Areas in Ghana: The Importance of Vectors. Infect Dis Poverty, 8, Article No. 9.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362603/
[43]  Briçt, O.J.T., Penny, M.A., Hardy, D., Awolola, T.S., Van Bortel, W., Corbel, V., et al. (2013) Effects of Pyrethroid Resistance on the Cost Effectiveness of a Mass Distribution of Long-Lasting Insecticidal Nets: A Modelling Study. Malaria Journal, 12, Aticle No. 77.
https://doi.org/10.1186/1475-2875-12-77

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133