|
基于纳米生物技术的三明治结构在蛋白质免疫分析中研究进展
|
Abstract:
蛋白质组研究在重大疾病机制以及药理控制机制探索上有着重要的意义,通过对生物样品(细胞、组织或体液等)在生理过程中蛋白质含量的比较分析,可以解码疾病模式与蛋白质组间的未知关联。近年来基于三明治结构的蛋白质检测技术已成为热门的研究方向。构建操作简便、快速灵敏的新型蛋白质生物传感器对生物医学的基础性研究,以及疾病的早期/预后临床诊断不但意义重大,而且切实可行。本文首先简要阐述了三明治免疫分析的基本原理,随后按不同读出方法,包括放射、比色、荧光、电化学以及局域表面等离子体共振等方面对其近年来的发展进行了回顾,主要集中在基于纳米生物技术的三明治结构在蛋白质分析的应用上。
Proteome research is of great significance in the exploration of major disease mechanisms and pharmacological control mechanisms. Through the comparative analysis of protein content in biological samples (cells, tissues or body fluids, etc.) in physiological processes, the unknown relationship between disease patterns and proteome can be decoded. In recent years, protein detection technology based on sandwich structure has become a hot research direction. The construction of a simple, rapid and sensitive new protein biosensor is not only of great significance, but also practical for the basic research of biomedicine and the early/prognostic clinical diagnosis of diseases. This paper first briefly describes the basic principle of sandwich immunoassay, and then reviews the development in recent years according to different readout methods, including radiation, colorimetry, fluorescence, electrochemistry and local surface plasmon resonance, mainly focusing on the application of sandwich structure based on nano biotechnology in protein analysis.
[1] | Self, C.H. and Cook, D.B. (1996) Advances in Immunoassay Technology. Current Opinion in Biotechnology, 7, 60-65.
https://doi.org/10.1016/S0958-1669(96)80096-6 |
[2] | Tian, S., You, W., Shen, Y., et al. (2019) Facile Synthesis of Silver-Rich Au/Ag Bimetallic Nanoparticles with Highly Active SERS Properties. New Journal of Chemistry, 43, 14772-14780. https://doi.org/10.1039/C9NJ02879J |
[3] | Vasan, R.S. (2006) Biomarkers of Cardiovascular Disease. Circulation, 113, 2335-2362.
https://doi.org/10.1161/CIRCULATIONAHA.104.482570 |
[4] | Shen, J., Li, Y., Gu, H., et al. (2014) Recent Development of Sandwich Assay Based on the Nanobiotechnologies for Proteins, Nucleic Acids, Small Molecules, and Ions. Chemical Reviews, 114, 7631-7677.
https://doi.org/10.1021/cr300248x |
[5] | Miles, L.E.M. and Hales, C.N. (1968) The Preparation and Properties of Purified 125I-Labelled Antibodies to Insulin. Biochemical Journal, 108, 611-618. https://doi.org/10.1042/bj1080611 |
[6] | Engvall, E. and Perlmann, P. (1971) Enzyme-Linked Immunosorbent Assay (ELISA) Quantitative Assay of Immunoglobulin G. Immunochemistry, 8, 871-874. https://doi.org/10.1016/0019-2791(71)90454-X |
[7] | Yang, Y., Zhu, J., Zhao, J., et al. (2019) Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein. Acs Applied Materials & Interfaces, 11, 3617-3626. https://doi.org/10.1021/acsami.8b21238 |
[8] | Ma, Y., Liu, H., Chen, Y., et al. (2020) Quantitative and Recyclable Surface-Enhanced Raman Spectroscopy Immunoassay Based on Fe3O4@TiO2@Ag Core-Shell Nanoparticles and Au Nanowire/Polydimethylsiloxane Substrates. Acs Applied Nano Materials, 3, 4610-4622. https://doi.org/10.1021/acsanm.0c00652 |
[9] | Zhao, J., Wu, C., Zhai, L., et al. (2019) A SERS-Based Immunoassay for the Detection of Alpha-Fetoprotein Using AuNS@Ag@SiO2 Core-Shell Nanostars. Journal of Materials Chemistry C, 7, 8432-8441.
https://doi.org/10.1039/C9TC01890E |
[10] | Zhang, Y., Sun, H., Gao, R., et al. (2018) Facile SERS-Active Chip (PS@Ag/SiO2/Ag) for the Determination of HCC Biomarker. Sensors and Actuators B—Chemical, 272, 34-42. https://doi.org/10.1016/j.snb.2018.05.139 |
[11] | He, W., Liu, Y., Yuan, J., et al. (2011) Au@Pt Nanostructures as Oxidase and Peroxidase Mimetics for Use in Immunoassays. Biomaterials, 32, 1139-1147. https://doi.org/10.1016/j.biomaterials.2010.09.040 |
[12] | Zhou, L., Zhou, J., Feng, Z., et al. (2016) Immunoassay for Tumor Markers in Human Serum Based on Si Nanoparticles and SiC@Ag SERS-Active Substrate. Analyst, 141, 2534-2541. https://doi.org/10.1039/C6AN00003G |
[13] | Zhang, S., Zhang, C., Jia, Y.Z., et al. (2019) Sandwich-Type Electrochemical Immunosensor Based on Au@Pt DNRs/NH2-MoSe2 NSs Nanocomposite as Signal Amplifiers for the Sensitive Detection of Alpha-Fetoprotein. Bioelectrochemistry, 128, 140-147. https://doi.org/10.1016/j.bioelechem.2019.03.012 |
[14] | Wang, Y., Zhao, G., Wang, H., et al. (2018) Sandwich-Type Electrochemical Immunoassay Based on Co3O4@MnO2-Thionine and Pseudo-ELISA Method toward Sensitive Detection of Alpha Fetoprotein. Biosensors & Bioelectronics, 106, 179-185. https://doi.org/10.1016/j.bios.2018.02.002 |
[15] | Zhu, D., Hu, Y., Zhang, X., et al. (2019) Colorimetric and Fluorometric Dual-Channel Detection of Alpha-Fetoprotein Based on the Use of ZnS-CdTe Hierarchical Porous Nanospheres. Microchimica Acta, 186, 124.
https://doi.org/10.1007/s00604-018-3225-4 |
[16] | Gu, B., Xu, C., Yang, C., et al. (2011) ZnO Quantum Dot Labeled Immunosensor for Carbohydrate Antigen 19-9. Biosensors and Bioelectronics, 26, 2720-2723. https://doi.org/10.1016/j.bios.2010.09.031 |
[17] | Mukundan, H., Xie, H., Anderson, A.S., et al. (2009) Optimizing a Waveguide-Based Sandwich Immunoassay for Tumor Biomarkers: Evaluating Fluorescent Labels and Functional Surfaces. Bioconjugate Chemistry, 20, 222-230.
https://doi.org/10.1021/bc800283e |
[18] | Gu, X., Wang, K., Qiu, J., et al. (2021) Enhanced Electrochemical and SERS Signals by Self-Assembled Gold Microelectrode Arrays: A Dual Readout Platform for Multiplex Immumoassay of Tumor Biomarkers. Sensors and Actuators B: Chemical, 334, Article ID: 129674. https://doi.org/10.1016/j.snb.2021.129674 |
[19] | Alves-Balvedi, R.P., Caetano, L.P., Madurro, J.M., et al. (2016) Use of 3,3’,5,5’ Tetramethylbenzidine as New Electrochemical Indicator of DNA Hybridization and Its Application in Genossensor. Biosensors & Bioelectronics, 85, 226-231. https://doi.org/10.1016/j.bios.2016.05.016 |
[20] | Gu, X., She, Z., Ma, T., et al. (2018) Electrochemical Detection of Carcinoembryonic Antigen. Biosensors & Bioelectronics, 102, 610-616. https://doi.org/10.1016/j.bios.2017.12.014 |
[21] | Zhang, D., Huang, L., Liu, B., et al. (2019) A Vertical Flow Microarray Chip Based on SERS Nanotags for Rapid and Ultrasensitive Quantification of Alpha-Fetoprotein and Carcinoembryonic Antigen. Microchimica Acta, 186, 699.
https://doi.org/10.1007/s00604-019-3792-z |
[22] | Akanda, M.R., Aziz, M.A., Jo, K., et al. (2011) Optimization of Phosphatase- and Redox Cycling-Based Immunosensors and Its Application to Ultrasensitive Detection of Troponin I. Analytical Chemistry, 83, 3926-3933.
https://doi.org/10.1021/ac200447b |
[23] | Yang, S., Zhang, F., Wang, Z., et al. (2018) A Graphene Oxide-Based Label-Free Electrochemical Aptasensor for the Detection of Alpha-Fetoprotein. Biosensors & Bioelectronics, 112, 186-192. https://doi.org/10.1016/j.bios.2018.04.026 |
[24] | Zhang, C., Gao, Y., Yang, N., et al. (2018) Direct Determination of the Tumor Marker AFP via Silver Nanoparticle Enhanced SERS and AFP-Modified Gold Nanoparticles as Capturing Substrate. Microchimica Acta, 185, 90.
https://doi.org/10.1007/s00604-017-2652-y |
[25] | So, H.M., Won, K., Kim, Y.H., et al. (2005) Single-Walled Carbon Nanotube Biosensors Using Aptamers as Molecular Recognition Elements. Journal of the American Chemical Society, 127, 11906-11907.
https://doi.org/10.1021/ja053094r |
[26] | Im, H., Bantz, K.C., Lee, S.H., et al. (2013) Self-Assembled Plasmonic Nanoring Cavity Arrays for SERS and LSPR Biosensing. Advanced Materials, 25, 2678-2685. https://doi.org/10.1002/adma.201204283 |
[27] | Zhang, Z., Wang, J., Shanmugasundaram, K.B., et al. (2020) Tracking Drug-Induced Epithelial-Mesenchymal Transition in Breast Cancer by a Microfluidic Surface-Enhanced Raman Spectroscopy Immunoassay. Small, 16, Article ID: 1905614. https://doi.org/10.1002/smll.201905614 |
[28] | Zhang, X.X., Xu, D., Guo, D., et al. (2020) Enzyme-Free Amplified SERS Immunoassay for the Ultrasensitive Detection of Disease Biomarkers. Chemical Communications, 56, 2933-2936. https://doi.org/10.1039/C9CC09379F |
[29] | Xiao, R., Lu, L., Rong, Z., et al. (2020) Portable and Multiplexed Lateral Flow Immunoassay Reader Based on SERS for Highly Sensitive Point-of-Care Testing. Biosensors & Bioelectronics, 168, Article ID: 112524.
https://doi.org/10.1016/j.bios.2020.112524 |
[30] | Zhang, R., Jin, Z., Tian, Z., et al. (2021) A Straightforward and Sensitive “ON-OFF” Fluorescence Immunoassay Based on Silicon-Assisted Surface Enhanced Fluorescence. Rsc Advances, 11, 7723-7731.
https://doi.org/10.1039/D0RA08759A |
[31] | Wang, M., Shang, Z., Yan, X., et al. (2021) Enhance Fluorescence Study of Grating Structure Based on Three Kinds of Optical Disks. Optics Communications, 481, Article ID: 126522. https://doi.org/10.1016/j.optcom.2020.126522 |
[32] | Pei, X., Tao, G., Wu, X., et al. (2020) Nanomaterial-Based Multiplex Optical Sensors. Analyst, 145, 4111-4123.
https://doi.org/10.1039/D0AN00392A |
[33] | Sardesai, N.P., Barron, J.C. and Rusling, J.F. (2011) Carbon Nanotube Microwell Array for Sensitive Electrochemiluminescent Detection of Cancer Biomarker Proteins. Analytical Chemistry, 83, 6698-6703.
https://doi.org/10.1021/ac201292q |
[34] | Xia, F., White, R.J., Zuo, X., et al. (2010) An Electrochemical Supersandwich Assay for Sensitive and Selective DNA Detection in Complex Matrices. Journal of the American Chemical Society, 132, 14346-14348.
https://doi.org/10.1021/ja104998m |
[35] | Zhang, B., Liu, B., Tang, D., et al. (2012) DNA-Based Hybridization Chain Reaction for Amplified Bioelectronic Signal and Ultrasensitive Detection of Proteins. Analytical Chemistry, 84, 5392-5399. https://doi.org/10.1021/ac3009065 |
[36] | Gu, X., Tian, S., Chen, Y., et al. (2021) A SERS-Based Competitive Immunoassay Using Highly Ordered Gold Cavity Arrays as the Substrate for Simultaneous Detection of β-Adrenergic Agonists. Sensors and Actuators B: Chemical, 345, Article ID: 130230. https://doi.org/10.1016/j.snb.2021.130230 |