|
宿州市新汴河重金属污染特征及其生态风险分析
|
Abstract:
为研究宿州新汴河水环境重金属污染特征及其生态风险,2019年12月至2020年11月期间对新汴河9个样点进行了连续采集分析。在测定六种重金属(As, Cd, Cu, Cr, Pb, Zn)的基础上,分别采用内梅罗综合污染指数和商值法对重金属污染水平及其生态危害风险进行评价。结果表明:新汴河六种重金属总体含量较低,含量依次为As (5.40 ± 3.65 μg/L) > Zn (3.20 ± 1.74 μg/L) > Cu (0.88 ± 0.75 μg/L) > Cr (0.14 ± 0.07 μg/L) ≥ Pb (0.10 ± 0.08 μg/L) > Cd (0.03 ± 0.03 μg/L)。与《地表水环境质量标准》(GB 3838-2002) III类水质限值相比,所测重金属含量均未超标,重金属平均污染情况均为安全风险水平;但与《生活饮用水卫生标准》(GB 5749-2006)相比,As超标占比8.3%;风险商值(RQ)计算结果表明:六种重金属RQ由大到小依次为:Cu (0.419 ± 0.357) > As (0.106 ± 0.072) > Zn (0.101 ± 0.055) > Cr (0.061 ± 0.033) > Pb (0.008 ± 0.007) > Cd (0.004 ± 0.004),其中Cu、As和Zn的RQ均值为中度生态风险(RQ > 0.1),RQ超过0.1的占比分别为98.1%、43.5%和46.3%。鉴于Cu的RQ在8月达到峰值(0.941),其在夏季的生态风险更应引起重视。
To study the pollution characteristics of heavy metals and their ecological risk in Xinbian River of Suzhou city, nine samples were collected and analyzed continuously from December 2019 to November 2020. Based on the measurement of six heavy metals (As, Cd, Cu, Cr, Pb and Zn), the Nemerow comprehensive pollution index and the quotient method were used to evaluate the pollution level and ecological hazard risk of heavy metals, respectively. The results show that the total contents of six heavy metals in Xinbian River are low, and the contents are As (5.40 ± 3.65 μg/L) > Zn (3.20 ± 1.74 μg/L) > Cu (0.88 ± 0.75 μg/L) > Cr (0.14 ± 0.07 μg/L) ≥ Pb (0.10 ± 0.08 μg/L) > Cd (0.03 ± 0.03 mu g/L). Compared with Class III level of the Environmental Quality Standard for Surface Water (GB 3838-2002), the content of the selected heavy metals do not exceed the standard, and the average pollution of heavy metals is at safety risk level. However, when compared with the Standard for Drinking Water Quality (GB 5749-2006), the exceeding proportion of As is 8.3%. The results of risk quotient value (RQ) showed that the RQ of the six heavy metals from the largest to the smallest is: Cu (0.419 ± 0.357) > As (0.106 ± 0.072) > Zn (0.101 ± 0.055) > Cr (0.061 ± 0.033) > Pb (0.008 ± 0.007) > Cd (0.004 ± 0.004). The mean RQ of Cu, As and Zn belong to the medium ecological risk level (RQ > 0.1), and the RQ > 0.1 proportion of these there heavy metals accounted for 98.1%, 43.5% and 46.3%, respectively. Since the RQ of Cu reaches its peak in August (0.941), the ecological risk of Cu should be paid more attention in summer.
[1] | QU, J., FAN, M. The current state of water quality and technology development for water pollution control in China. Critical Reviews in Environmental Science & Technology, 2010, 40(6): 519-560. https://doi.org/10.1080/10643380802451953 |
[2] | SCHWARZENBACH, R. P., EGLI, T., HOFSTETTER, T. B., et al. Global water pollution and human health. Annual Review of Environment & Resources, 2010, 35: 109-136. |
[3] | CANPOLAT, ?., VAROL, M., OKAN, ?. ?., et al. A comparison of trace element concentrations in surface and deep water of the Keban Dam Lake (Turkey) and associated health risk assessment. Environmental Research, 2020, 190: 110012. |
[4] | 林曼利, 桂和荣, 彭位华, 等. 煤炭资源型城市街尘重金属污染特征及其生态风险——以宿州市为例[J]. 地球与环境, 2017, 45(2): 185-192.
LIN Manli, GUI Herong, PENG Weihua, et al. Heavy metal pollution characteristics and ecological risk of street dust in coal resource-based cities: A case study of Suzhou. Earth and Environment, 2017, 45(2): 185-192. (in Chinese) |
[5] | JIANG, Y., GUI, H., YU, H., et al. Hydrochemical characteristics and water quality evaluation of rivers in different regions of cities: A case study of Suzhou city in Northern Anhui Province, China. Water, 2020, 12(4): 950.
https://doi.org/10.3390/w12040950 |
[6] | CHEN, K., SUN, L. and TANG, J. Hydrochemical differences between river water and groundwater in Suzhou, Northern Anhui Province, China. Open Geosciences, 2020, 12(1): 1421-1429. https://doi.org/10.1515/geo-2020-0203 |
[7] | 余铭明, 李致春, 李前伟, 等. 煤炭型城市城区河流水体水质现状评价与分析——以宿州新汴河为例[J]. 西昌学院学报, 2020, 34(2): 55-61.
YU Mingming, LI Zhichun, LI Qianwei, et al. Evaluation and analysis of water quality status of urban river in coal-type city: A case study of Xinbian River in Suzhou. Journal of Xichang University, 2020, 34(2): 55-61. (in Chinese) |
[8] | 吴明鑫, 马杰, 王森森, 等. 水利区周边土壤重金属含量特征及污染评价——以宿州市新汴河为例[J]. 海峡科技与产业, 2019(5): 34-43.
WU Mingxin, MA Jie, WANG Sensen, et al. Heavy metal content characteristics and pollution evaluation of soil surrounding water conservancy area: A case study of Xinbian River in Suzhou city. Strait Technology and Industry, 2019(5): 34-43. (in Chinese) |
[9] | 李其华. 新汴河宿州市段水质污染情况调查与分析[J]. 宿州师专学报, 2003, 18(2): 63-64.
LI Qihua. Research and analysis of water pollution of Xinbian River of Suzhou city. Journal of Suzhou Teachers College, 2003, 18(2): 63-64. (in Chinese) |
[10] | 余永琪, 冯松宝. 宿州新汴河底泥重金属分布特征及污染评价[J]. 西部资源, 2018(3): 123-126.
YU Yongqi, FENG Songbao. Distribution characteristics and pollution assessment of heavy metals in sediments of Xinbian River, Suzhou. Western Resources, 2018(3): 123-126. (in Chinese) |
[11] | 王飞. 新汴河水利工程信息化管理系统研究与实现[J]. 陕西水利, 2020(5): 143-145.
WANG Fei. Research and implementation of information management system of water conservancy projects in the Xinbian River. Shaanxi Water Resources, 2020(5): 143-145. (in Chinese) |
[12] | 丁婷婷, 杜士林, 王宏亮, 等. 嘉兴市河网重金属污染特征及生态风险评价[J]. 环境化学, 2020, 39(2): 500-511.
DING Tingting, DU Shilin, WANG Hongliang, et al. Pollution characteristics and ecological risk assessment of heavy metals in Jiaxing River network, Zhejiang Province. China Environmental Chemistry, 2020, 39(2): 500-511. (in Chinese) |
[13] | 吴学丽, 杨永亮, 汤奇峰, 等. 沈阳河水、地下水及沉积物中重金属的生态风险评价及来源辨析[J]. 生态学杂志, 2011, 30(3): 438-447.
WU Xueli, YANG Yongliang, TANG Qifeng, et al. Ecological risk assessment and origin analysis of heavy metals in river water, groundwater and sediment in Shenyang. Chinese Journal of Ecology, 2011, 30(3): 438-447. (in Chinese) |
[14] | 国家环境保护总局. 地表水环境质量标准(GB3838-2002) [S]. 北京: 中国环境科学出版社, 2002.
State Environmental Protection Administration. Environmental quality standard for surface water (GB3838-2002). Beijing: China Environmental Science Press, 2002. (in Chinese) |
[15] | 曹洪法, 沈英娃. 生态风险评价研究概述[J]. 环境化学, 1991, 10(3): 26-30.
CAO Hongfa, SHEN Yingwa. Review of ecological risk assessment. Environmental Chemistry, 1991, 10(3): 26-30. (in Chinese) |
[16] | CHENG, Y., ZHOU, J. and SHAN, Z. Progress of study on aquatic ecological risk assessment of pesticides in USA. Chinese Journal of Pesticide Science, 2005, 7(4): 293-298. |
[17] | SáNCHEZ-BAYO, F., BASKARAN, S. and KENNEDY, I. R. Ecological relative risk (EcoRR): Another approach for risk assessment of pesticides in agriculture. Agriculture Ecosystems & Environment, 2002, 91(1-3): 37-57. |
[18] | 刘昔, 王智, 王学雷, 等. 应用物种敏感性分布评价中国湖泊水体中重金属污染的生态风险[J]. 湖泊科学, 2018, 30(5): 1206-1217.
LIU Xi, WANG Zhi, WANG Xuelei, et al. Assessment of ecological risk of heavy metal pollution in lakes in China using species sensitivity distribution. Journal of Lake Sciences, 2018, 30(5): 1206-1217. (in Chinese) |
[19] | LIU, Y., WU, F., MU, Y., et al. Setting water quality criteria in China: Approaches for developing species sensitivity distributions for metals and metalloids. Reviews of Environmental Contamination and Toxicology, 2014, 230: 35-57. |
[20] | 施阳. 巢湖表层水体中砷及重金属分布特征、风险评价及来源[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2018.
SHI Yang. Distribution characteristics, risk assessment and sources of arsenic and heavy metals in surface water of Chaohu Lake. Hefei: Anhui Medical University, 2018. (in Chinese) |
[21] | 严睿文, 李玉成. 淮河安徽段水及沉积物中重金属的研究[J]. 生物学杂志, 2010, 27(2): 74-79.
YAN Ruiwen, LI Yucheng. Study on heavy metals in water and sediment of Anhui section of Huaihe River. Chinese Journal of Biology, 2010, 27(2): 74-79. (in Chinese) |
[22] | 王伟, 樊祥科, 黄春贵, 等. 江苏省五大湖泊水体重金属的监测与比较分析[J]. 湖泊科学, 2016, 28(3): 494-501.
WANG Wei, FAN Xiangke, HUANG Chungui, et al. Monitoring and comparative analysis of heavy metals in five lakes in Jiangsu Province. Journal of Lake Sciences, 2016, 28(3): 494-501. (in Chinese) |
[23] | 程琛, 刘佳俊, 汪玲. 朱仙庄矿区水体重金属特征分析与评价[J]. 黄冈师范学院学报, 2020, 40(6): 37-41.
CHENG Chen, LIU Jiajun and WANG Ling. Analysis and evaluation of the characteristics of heavy metals in Zhuxianzhuang mining area. Journal of Huanggang Normal University, 2020, 40(6): 37-41. (in Chinese) |
[24] | GIRI, S., SINGH, A. K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India. Journal of Hazardous Materials, 2014, 265: 305-314. |
[25] | 安士凯, 赵琦, 姜春露, 等. 淮南采煤沉陷区积水重金属健康风险评价[J]. 中国矿业, 2020, 29(S2): 88-93.
AN Shikai, ZHAO Qi, JIANG Chunlu, et al. Health risk assessment of heavy metals in water accumulation in huainan coal mining subsidence area. China Mining, 2020, 29(S2): 88-93. (in Chinese) |
[26] | WANG, L., GAO, S., YIN, X., et al. Arsenic accumulation, distribution and source analysis of rice in a typical growing area in north China. Ecotoxicology & Environmental Safety, 2019, 167: 429-434. |
[27] | XIAO, R., GUO, D., ALI, A., et al. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution, 2019, 248: 349-357. |
[28] | DUAN, Y., ZHANG, Y., LI, S., et al. An integrated method of health risk assessment based on spatial interpolation and source apportionment. Journal of Cleaner Production, 2020, 276: 123218. |
[29] | WUANA, R. A., OKIEIMEN, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011, 2011: 402647. |