全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

融合层次分析与LeaderRank算法的数字治理平台人物识别研究
Digital Governance Character Recognition Based on Fusion of AHP and LeaderRank Algorithm

DOI: 10.12677/CSA.2021.119246, PP. 2404-2415

Keywords: 数字治理,公民代表识别,层次分析法,LeaderRank算法
Digital Governance
, Identification of Citizen Representatives, AHP, LeaderRank Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

[目的/意义]在数字治理中,数字治理平台的公民代表识别和核心工作人员识别是一个十分重要的研究课题。政府与公民代表沟通可以更精准地服务群众,使决策更加科学可靠。核心工作人员识别有助于优化平台组织结构,推广数字治理经验,提高数字治理效率。[方法/过程]本文从用户属性、信息交互、网络结构三个方面,利用层次分析法结合LeaderRank算法计算数字治理参与度,用于识别公民代表和核心工作人员。[结果/结论]构建了一个参与度评判指标,用于识别公民代表和核心工作人员,并提出提高公民参与数字治理,提高政府人员数字治理能力,推进未来在线协商共治的建议。
[Purpose/Significance] In digital governance, the identification of citizen representatives and core staff of digital governance platform is a very important research topic. The government can communicate with citizen representatives to understand the actual needs of citizens and can communicate with core staff to optimize the organizational structure to make decision-making more scientific and reliable and improve the efficiency of digital governance. [Method/Process] In this paper, from the three aspects of user attributes, information interaction and network structure, we use AHP combined with LeaderRank algorithm to calculate the degree of participation, which is used to identify citizen representatives and core staff. [Result/Conclusion] A evaluation index is constructed to identify the representatives of citizens and core staff, which helps the digital governance platform to change from passive acceptance of mass advice to active understanding of the masses’ problems in the era of digital governance and to turn passive to active.

References

[1]  中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(001).
[2]  曹冬英, 王少泉. 习近平总书记关于数字治理的重要论述研究[J]. 中共福建省委党校学报, 2019(4): 55-63.
[3]  曼纽尔·卡斯特, 夏铸九, 王志弘. 信息时代三部曲: 经济, 社会与文化[M]. 北京: 社会科学文献出版社, 2001.
[4]  黄建伟, 陈玲玲. 国内数字治理研究进展与未来展望[J]. 理论与改革, 2019(1): 86-95.
[5]  杜伟泉. 基层社会治理数字化转型研究——基于我国东部M市实践经验的分析[J]. 情报理论与实践, 2021, 44(2): 109-114+63.
[6]  许峰. 地方政府数字化转型机理阐释——基于政务改革“浙江经验”的分析[J]. 电子政务, 2020(10): 2-19.
[7]  Milgram, S.J. (1967) The Small World Problem. Psychology Today, 1, 61-67.
[8]  Backstrom, L., Boldi, P., Rosa, M., Ugander, J. and Vigna, S. (2012) Four Degrees of Separation. 4th ACM Web Science Conference (WebSci 2012), 22-24 June 2012, Evanston, 45-54.
[9]  Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of ‘Small-World’ Networks. Nature, 393, 440-442.
https://doi.org/10.1038/30918
[10]  吴岘辉, 张晖, 赵旭剑, 李波, 杨春明. 基于用户行为网络的微博意见领袖挖掘算法[J]. 计算机应用研究, 2015, 32(9): 2678-2683.
[11]  Zhang, W., Li, X., He, H. and Wang, X. (2014) Identifying Network Public Opinion Leaders Based on Markov Logic Networks. The Scientific World Journal, 2014, Article ID: 268592.
https://doi.org/10.1155/2014/268592
[12]  彭丽徽, 李贺, 张艳丰. 基于灰色关联分析的网络舆情意见领袖识别及影响力排序研究——以新浪微博“8·12滨海爆炸事件”为例[J]. 情报理论与实践, 2017, 40(9): 90-94.
[13]  许宁菲, 程生雪, 王虎, 程艳霞, 江长斌. 基于ActivityRank算法的社会化电商意见领袖识别[J]. 现代商贸工业, 2019, 40(15): 47-49.
[14]  Chen, C.M. and You, Z.L. (2018) Community Detection with Opinion Leaders’ Identification for Promoting Collaborative Problem-Based Learning Performance. British Journal of Educational Technology, 50, 1846-1864.
https://doi.org/10.1111/bjet.12673
[15]  Jiang, W., Gao, M., Wang, X. and Wu, X. (2016) A New Evaluation Algorithm for the Influence of User in Social Network. China Communications, 13, 200-206.
https://doi.org/10.1109/CC.2016.7405737
[16]  Weng, J., Lim, E.P., Jing, J. and He, Q. (2010) TwitterRank: Finding Topic-Sensitive Influential Twitterers. Proceedings of the 3rd International Conference on Web Search and Data Mining (WSDM 2010), New York, 4-6 February 2010, 261-270.
https://doi.org/10.1145/1718487.1718520
[17]  肖宇, 许炜, 商召玺. 微博用户区域影响力识别算法及分析[J]. 计算机科学, 2012, 39(9): 38-42.
[18]  Zhou, H., Zeng, D. and Zhang, C. (2009) Finding Leaders from Opinion Networks. IEEE International Conference on Intelligence & Security Informatics, Richardson, 8-11 June 2009, 266-268.
https://doi.org/10.1109/ISI.2009.5137323
[19]  李慧, 王宗锋. 虚拟社区中意见领袖的识别模型研究[J]. 电化教育研究, 2013, 34(2): 42-46.
[20]  朱志国, 张翠, 丁学君, 等. 基于熵权灰色关联模型的重大突发舆情意见领袖识别研究[J]. 情报学报, 2017, 36(7): 706-714.
[21]  Borgatti, S.P. and Everett, M.G. (2006) A Graph-Theoretic Perspective on Centrality. Social Networks, 28, 466-484.
https://doi.org/10.1016/j.socnet.2005.11.005
[22]  Ghosh, R. and Lerman, K. (2010) Predicting Influential Users in Online Social Networks. Proceedings of KDD Workshop on Social Network Analysis (SNA-KDD), Washington DC, 24-25 July 2010, arXiv:1005.4882.
[23]  吴锦池, 余维杰. 基于社会网络分析的政务微博影响力研究[J]. 情报科学, 2021, 39(2): 78-85.
[24]  郭博, 许昊迪, 雷水旺. 知乎平台用户影响力分析与关键意见领袖挖掘[J]. 图书情报工作, 2018, 62(20): 122-132.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133