全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进的近似l0范数的稀疏信号重构算法
A Sparse Signal Reconstruction Algorithm Based on Improved Approximate l0 Norm

DOI: 10.12677/CSA.2021.118223, PP. 2179-2189

Keywords: 压缩感知,信号重构,近似l0范数,共轭梯度法
Compressive Sensing
, Signal Reconstruction, Approximate l0 Norm, Conjugate Gradient Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

稀疏信号重构算法是压缩感知的关键。基于近似l0范数的稀疏信号重构可以通过选取一个光滑函数近似l0范数,从而将l0范数最小化问题转化为光滑函数的优化问题。为了提高压缩感知中稀疏信号重构的精度,本文提出了一种基于改进的近似l0范数的稀疏信号重构算法。该算法首先利用一种改进的光滑函数来近似l0范数;其次利用外点罚函数法和共轭梯度法求解基于该光滑函数的优化问题的稀疏解;最后进行了多项实验来验证所提出算法的有效性。实验结果表明:相比于光滑l0算法、基追踪算法和非凸复合稀疏基算法,本文所提算法在重构误差、信噪比和恢复成功率等方面更具优越性。
The sparse signal reconstruction algorithm is the key to compressive sensing. The sparse signal reconstruction based on approximate l0 norm can be achieved by choosing a smooth function to approximate l0 norm, thus the minimization problem of l0 norm is transformed into an optimization problem of a smooth function. To improve the accuracy of the sparse signal reconstruction in compressive sensing, a sparse signal reconstruction algorithm based on an improved approximate l0 norm is proposed in this paper. Firstly, a smooth function is proposed to approximate l0 norm. Then, the sparse solution of this optimization problem that based on the smooth function is solved by exterior point penalty function method and conjugate gradient method. Finally, a number of experiments are carried out to verify the performance of the proposed algorithm. The experimental results show that the proposed algorithm is more superior in reconstruction error, signal-to-noise ratio and recovery success rate compared with smoothed l0 algorithm, the basis pursuit algorithm and the non-convex composite sparse bases algorithm.

References

[1]  Donoho, D.L. (2006) Compressed Sensing. IEEE Transactions on Information Theory, 52, 1289-1306.
https://doi.org/10.1109/TIT.2006.871582
[2]  Salari, S., Chan, F., Chan, Y.T. and Guay, R. (2020) DOA Estima-tion Using Compressive Sampling-Based Sensors in the Presence of Interference. IEEE Transactions on Aerospace and Electronic Systems, 56, 4395-4405.
https://doi.org/10.1109/TAES.2020.2990818
[3]  张国平, 牟忠德. 基于压缩感知的医学图像重建方法[J]. 生物医学工程学进展, 2019, 40(4): 187-195.
[4]  Herman, M.A. and Strohmer, T. (2009) High-Resolution Radar via Compressed Sensing. IEEE Transactions on Signal Processing, 57, 2275-2284.
https://doi.org/10.1109/TSP.2009.2014277
[5]  Li, H., Zhang, Q., Cui, A. and Peng, J. (2020) Minimization of Fraction Function Penalty in Compressed Sensing. IEEE Transactions on Neural Networks and Learning Systems, 31, 1626-1637.
https://doi.org/10.1109/TNNLS.2019.2921404
[6]  Peng, J., Yue, S. and Li, H. (2015) NP/CMP Equivalence: A Phenomenon Hidden among Sparsity Models l0 Minimization and lp Minimization for Information Processing. IEEE Transactions on Information Theory, 61, 4028-4033.
https://doi.org/10.1109/TIT.2015.2429611
[7]  Tropp, J.A. and Gilbert, A.C. (2007) Signal Recovery from Ran-dom Measurements via Orthogonal Matching Pursuit. IEEE Transactions on Information Theory, 53, 4655-4666.
https://doi.org/10.1109/TIT.2007.909108
[8]  Wang, J., Kwon, S. and Shim, B. (2012) Generalized Orthogonal Matching Pursuit. IEEE Transactions on Signal Processing, 60, 6202-6216.
https://doi.org/10.1109/TSP.2012.2218810
[9]  Dai, W. and Milenkovic, O. (2009) Subspace Pursuit for Com-pressive Sensing Signal Reconstruction. IEEE Transactions on Information Theory, 55, 2230-2249.
https://doi.org/10.1109/TIT.2009.2016006
[10]  Chen, S.S., Donoho, D.L. and Saunders, M.A. (2001) Atomic Decomposition by Basis Pursuit. Siam Review, 43, 129-159.
https://doi.org/10.1137/S003614450037906X
[11]  Bayram, I. (2016) On the Convergence of the Iterative Shrink-age/Thresholding Algorithm with a Weakly Convex Penalty. IEEE Transactions on Signal Processing, 64, 1597-1608.
https://doi.org/10.1109/TSP.2015.2502551
[12]  Figueiredo, M., Nowak, R.D. and Wright, S.J. (2007) Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597.
https://doi.org/10.1109/JSTSP.2007.910281
[13]  Mohimani, H., Babaie-Zadeh, M. and Jutten, C. (2009) A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed l0 Norm. IEEE Transactions on Signal Pro-cessing, 57, 289-301.
https://doi.org/10.1109/TSP.2008.2007606
[14]  林婉娟, 赵瑞珍, 李浩. 用于压缩感知信号重建的NSL0算法[J]. 新型工业化, 2011(17): 78-84.
[15]  张巍, 朱正为, 汪亮, 王学渊. 一种A-HNSL0压缩感知SAR图像重建方法[J]. 电光与控制, 2020, 27(8): 28-32.
[16]  周洁容, 李海洋, 凌军, 等. 基于非凸复合函数的稀疏信号恢复算法[J]. 自动化学报, 2021, 47(x): 1-12.
[17]  Hunter, D.R. and Lange, K. (2004) A Tutorial on MM algorithms. The American Statistician, 58, 30-37.
https://doi.org/10.1198/0003130042836
[18]  袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京: 科学出版社, 1997: 455-482.
[19]  Clarke, F. (1983) Optimization and Non-Smooth Analysis. Society for Industrial and Applied Mathematics, New York, 37-187.
https://doi.org/10.1137/1.9781611971309
[20]  Candes, E.J., Wakin, M.B. and Boyd, S.P. (2008) Enhancing Sparsity by Reweighted l1 Minimization. Journal of Fourier Analysis and Applications, 14, 877-905.
https://doi.org/10.1007/s00041-008-9045-x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133