全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于主题分类的旅游路线推荐规划模型——以北京市为例
Tourism Route Recommendation and Planning Model Based on Topic Classification—Taking Beijing as an Example

DOI: 10.12677/CSA.2021.118218, PP. 2126-2136

Keywords: 文本挖掘,LDA主题模型,TF-IDF,K均值聚类,蚁群算法
Text Mining
, LDA Theme Model, TF-IDF, K-Means Clustering, Ant Colony Algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着经济的发展,旅游逐渐成为人们生活的刚需,但计划行程、旅途的疲惫常常牵绊住人们外出的步伐。因此,本文基于北京市景点的文本评论运用LDA模型、K均值聚类进行主题提取、运用TF-IDF值进行评价打分为用户推荐最适宜的景点,节省了用户阅读攻略、规划行程的时间。不同于以往的数据分析,文本评论可以更直接反映用户的想法、更接近实际。除此之外,对于被选出来的景点,通过转化为旅行商问题,运用运筹学的蚁群算法为用户合理规划路线,减少步行时间以及交通时间。
With the development of the economy, travel has gradually become the need of people’s life, but the fatigue of planning trips and the exhaustion of the journey have hampered the pace of people going out. Therefore, based on the text review of scenic spots in Beijing, this paper uses LDA model, K-means clustering to extract topics, and TF-IDF value to evaluate the most suitable scenic spots, recommend for users, in order to save the user’s time of reading strategy and planning the trip time. Unlike previous data analysis, text comments can reflect users’ ideas more directly and be closer to reality. In addition, for the selected scenic spots, by transforming into a travelling salesman problem, the ant colony algorithm of operations research is used to plan the route reasonably for users to reduce walking time and traffic time.

References

[1]  张宇菲, 彭旭, 邵光明, 陈华友. 旅游路线规划问题[J]. 数学的实践与认识, 2016, 46(15): 81-89.
[2]  常亮, 孙文平, 张伟涛, 宾辰忠, 古天龙. 旅游路线规划研究综述[J]. 智能系统学报, 2019, 14(1): 82-92.
[3]  刘忠花, 李宪印, 于婷, 杨博旭. 基于三阶段TSP算法的旅游路线规划[J]. 曲阜师范大学学报(自然科学版), 2016, 42(4): 11-16.
[4]  徐锋, 杜军平. 改进蚁群算法在旅游路线规划中的应用研究[J]. 计算机工程与应用, 2009, 45(23): 193-195+226.
[5]  徐戈, 王厚峰. 自然语言处理中主题模型的发展[J]. 计算机学报, 2011, 34(8): 1423-1436.
[6]  蒋帅. K-均值聚类算法研究[D]: [硕士学位论文]. 西安: 陕西师范大学, 2010.
[7]  杨剑峰. 蚁群算法及其应用研究[D]: [博士学位论文]. 杭州: 浙江大学, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133