全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无人机遥感图像数据可视化系统的设计与实现
Design and Realization of UAV Remote Sensing Image Data Visualization System

DOI: 10.12677/CSA.2021.118215, PP. 2096-2107

Keywords: 遥感图像,数据库,目标检测,可视化
Remote Sensing Image
, Database, Object Detection, Visualization

Full-Text   Cite this paper   Add to My Lib

Abstract:

林业疫木防治工作中,三维地球平台上疫木侵染信息可视化使数据空间分布和关联更加清晰直观,有助于林业工作人员高效率地对病树及时防治。本文利用数据库技术、目标检测技术以及三维地球可视化技术处理无人机遥感图像为林业研究提供重要依据。首先,无人机拍摄林区图片以及视频,将图像数据按照拍摄地点、拍摄日期、拍摄角度、病虫类型等信息上传数据库。其次,以松材线虫和红脂大小蠹为试验对象,利用SSD目标检测算法检测出受害区域。最后,将检测结果图在三维地球上可视化。本文提出的基于无人机遥感图像数据的存储、检测以及可视化为林业发展创造价值。
In the prevention and control of forest diseased trees, the visualization of diseased trees infestation information on the three-dimensional earth platform makes the spatial distribution and correlation of data clearer and more intuitive, which helps forestry staff to efficiently prevent and control diseased trees in a timely manner. The database technology, object detection technology and three-dimensional earth visualization technology are used in this paper to process the UAV remote sensing images for providing an important basis for forestry research. Firstly, the forest area pictures and videos are taken by the UAV. The images are uploaded to the database according to the shooting location, shooting date, shooting angle, pest type and other information. Secondly, the pine wood nematode and red fat beetle are chosen as the experiment data in this paper, and the SSD object detection algorithm is used to realize the detection of the affected area. Finally, the detection results are visualized on the three-dimensional earth. The storage, detection and visualization of remote sensing image data based on the UAV proposed in this paper create value for forestry development.

References

[1]  国家林业局. 全国林业信息化建设纲要和技术指南(2008~2020年) [EB/OL]. http://www.gov.cn/gzdt/2009-02/17/content_1233970.htm, 2020-07-29.
[2]  王占刚, 庄大方, 邱冬生, 明涛. 林业数据挖掘与可视化的应用分析[J]. 地球信息科学, 2007, 9(4): 19-22, 141.
[3]  史洁青, 冯仲科, 刘金成. 基于无人机遥感影像的高精度森林资源调查系统设计与试验[J]. 农业工程学报, 2017, 33(11): 82-90.
[4]  刘萍, 梁倩玲, 陈梦, 刘忠军, 盛兆湖, 苏延乐. 林业有害生物灾害损失评估指标体系构建[J]. 林业科学, 2016, 52(6): 101-107.
[5]  张素兰, 覃菊, 唐晓东, 王宇杰, 黄金龙, 宋清亮, 等. 松材线虫危害下马尾松光谱特征与估测模型研究[J]. 光谱学与光谱分析, 2019, 39(3): 865-872.
[6]  付卓新, 姚锐. 浅谈森林资源调查中无人机遥感的应用[J]. 南方农业, 2015, 9(36): 246, 248.
[7]  Dash, J.P., Watt, M.S., Pearse, G.D., Heaphy, M. and Dungey, H.S. (2017) Assessing Very High Resolution UAV Imagery for Monitoring Forest Health during a Simulated Disease Out-break. International Journal of Photogrammetry & Remote Sensing, 131, 1-14.
https://doi.org/10.1016/j.isprsjprs.2017.07.007
[8]  Pajares, G. (2015) Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81, 281-330.
https://doi.org/10.14358/PERS.81.4.281
[9]  晏磊, 廖小罕, 周成虎, 樊邦奎, 龚健雅, 崔鹏, 等. 中国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报, 2019, 21(4): 476-495.
[10]  李卫正, 申世广, 何鹏, 郝德君, 方彦, 陶珑, 等. 低成本小型无人机遥感定位病死木方法[J]. 林业工程学报, 2014, 28(6): 102-106.
[11]  陶欢, 李存军, 谢春春, 周静平, 淮贺举, 蒋丽雅, 等. 基于HSV阈值法的无人机影像变色松树识别[J]. 南京林业大学学报(自然科学版), 2019, 43(3): 99-106.
[12]  Fan, Z., Lu, J., Gong, M., Xie, H. and Good-man, E.D. (2018) Automatic Tobacco Plant Detection in UAV Images via Deep Neural Networks. IEEE Journal of Se-lected Topics in Applied Earth Observations & Remote Sensing, 11, 876-887.
https://doi.org/10.1109/JSTARS.2018.2793849
[13]  孙钰, 周焱, 袁明帅, 刘文萍, 骆有庆, 宗世祥. 基于深度学习的森林虫害无人机实时监测方法[J]. 农业工程学报, 2018, 34(21): 74-81.
[14]  彭明霞, 夏俊芳, 辉彭. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209.
[15]  Deng, X., Tong, Z., Lan, Y. and Huang, Z. (2020) Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing. AgriEngineering, 2, 294-307.
https://doi.org/10.3390/agriengineering2020019
[16]  王丽娟, 靳继红. 基于MySQL的查询优化技术研究[J]. 电脑知识与技术, 2017, 13(30): 35-36.
[17]  颜清, 苗壮, 赖鑫生, 蒋昌猛. 大数据时代关系数据库MySQL的创新与发展[J]. 科技风, 2020(20): 75-76.
[18]  魏鑫, 陈勇, 史晓睿, 刘广才, 董福安. 基于Nginx的服务器负载均衡策略研究[J]. 数码设计(上), 2019(12): 370.
[19]  李兵. Nginx服务器性能优化研究[J]. 石河子科技, 2020(4): 36-37.
[20]  Cozzi, P. (2018) Cesium. http://cesiumjs.org/
[21]  Chaturvedi, K. (2014) Web Based 3D Analysis and Visualization Using HTML5 and Web GL.
[22]  马小川, 乔卿丞. 处理CentOS 7启动错误[J]. 网络安全和信息化, 2020(10): 158-161.
[23]  冯锦强. 网络调查系统在教研活动中的应用——以“腾讯问卷”在信息技术学科教研活动中的应用为例[J]. 小学教学参考, 2020(9): 56-57.
[24]  陈良英. 基于属性加密的计算机数据库安全检测工具的设计与运用[J]. 信息技术与网络安全, 2020, 39(4): 30-35.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133