|
基于分割的自适应特征提取诊断心音方法
|
Abstract:
[1] | WHO (2020) Cardiovascular Diseases.
https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1 |
[2] | Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293. https://doi.org/10.1080%2F028418501127346846 |
[3] | Vos, T., Barber, R.M., Bell, B., et al. (2015) Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 301 Acute and Chronic Dis-eases and Injuries in 188 Countries, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. The Lancet, 386, 743-800.
https://doi.org/10.1016/S0140-6736(15)60692-4 |
[4] | Sun, S., Wang, H., Chang, Z., Mao, B. and Liu, Y. (2019) On the Mahalanobis Distance Classification Criterion for a Ventricular Septal Defect Diagnosis System. IEEE Sensors Journal, 19, 2665-2674.
https://doi.org/10.1109/JSEN.2018.2882582 |
[5] | 谭朝文, 王威廉, 宗容, 潘家华, 杨宏波. 基于卷积神经网络的先心病心音信号分类算法[J]. 生物医学工程学杂志, 2019, 36(5): 728-736, 744. https://doi.org/10.7507/1001-5515.201806031 |
[6] | Notario, P.M., Gentile, E., Amidon, M., Angst, D., Lefaiver, C. and Webster, K. (2019) Home-Based Telemedicine for Children with Medical Complexity. Telemedicine and e-Health, 25, 1123-1132. https://doi.org/10.1089/tmj.2018.0186 |
[7] | Coviello, J.S. (2013) Auscultation Skills: Breath & Heart Sounds. 5th Edition, Lippincott Williams & Wilkins, Philadelphia. |
[8] | Liu, Q., Wu, X. and Ma, X. (2018) An Automatic Segmentation Method for Heart Sounds. BioMedical Engineering OnLine, 17, Article No. 106. https://doi.org/10.1186/s12938-018-0538-9 |
[9] | Messner, E., Z?hrer, M. and Pernkopf, F. (2018) Heart Sound Segmentation—Anevent Detection Approach Using Deep Recurrent Neural Networks. IEEE Transactions on Biomedi-cal Engineering, 65, 1964-1974.
https://doi.org/10.1109/TBME.2018.2843258 |
[10] | Sun, S.P. (2015) An Innovative Intelligent System Based on Automatic Diagnostic Feature Extraction for Diagnosing Heart Diseases. Knowledge-Based Systems, 75, 224-238.
https://doi.org/10.1016/j.knosys.2014.12.001 |
[11] | Sun, S. and Wang, H. (2018) Principal Component Analy-sis-Based Features Generation Combined with Ellipse Models-Based Classification Criterion for a Ventricular Septal Defect Diagnosis System. Australasian Physical & Engineering Sciences in Medicine, 41, 821-836. http://link.springer.com/10.1007/s13246-018-0676-1
https://doi.org/10.1007/s13246-018-0676-1 |
[12] | Sun, S., Wang, H., Jiang, Z., Fang, Y. and Tao, T. (2014) Seg-mentation-Based Heart Sound Feature Extraction Combined with Classifier Models for a VSD Diagnosis System. Expert Systems with Applications, 41, 1769-1780.
http://www.sciencedirect.com/science/article/pii/S0957417413006970
https://doi.org/10.1016/j.eswa.2013.08.076 |
[13] | Choi, S. and Jiang, Z. (2010) Cardiac Sound Murmurs Classifica-tion with Autoregressive Spectral Analysis and Multi-Support Vector Machine Technique. Computers in Biology and Medicine, 40, 8-20.
http://www.sciencedirect.com/science/article/pii/S0010482509001796
https://doi.org/10.1016/j.compbiomed.2009.10.003 |
[14] | Ali, M.N., El Dahshan, E.-S.A. and Yahia, A.H. (2017) Denoising of Heart Sound Signals Using Discrete Wavelet Transform. Circuits, Systems, and Signal Processing, 36, 4482-4497. https://doi.org/10.1007/s00034-017-0524-7 |
[15] | Continuing Medical Implementation (2019) Heart Sounds Databases-Continuing Medical Implementation.
http://www.cvtoolbox.com/index.html |
[16] | MacWalter, D. and MacWalter, G. (2019) Human Heart Sounds and Mur-murs.
https://libguides.dundee.ac.uk/medicine/databases |
[17] | Máttar, J.A., Shoemaker, W.C., Diament, D., Lomar, A., Lopes, A.C., De Freitas, E., Stella, F.P. and Factore, L.A. (1991) Systolic and Diastolic Time Intervals in the Critically Ill Patient. Critical Care Medicine, 19, 1382-1386.
http://www.ncbi.nlm.nih.gov/pubmed/1935158
https://doi.org/10.1097/00003246-199111000-00014 |
[18] | Yeo, T.C., Dujardin, K.S., Tei, C., Mahoney, D.W., McGoon, M.D. and Seward, J.B. (1998) Value of a Doppler-Derived Index Combining Systolic and Diastolic Time In-tervals in Predicting Outcome in Primary Pulmonary Hypertension. The American Journal of Cardiology, 81, 1157-1161. https://doi.org/10.1016/S0002-9149(98)00140-4 http://www.sciencedirect.com/science/article/pii/S0002914998001404 |
[19] | Cui, W., Roberson, D.A., Chen, Z., Madro-nero, L.F. and Cuneo, B.F. (2008) Systolic and Diastolic Time Intervals Measured from Doppler Tissue Imaging: Nor-mal Values and Z-Score Tables, and Effects of Age, Heart Rate, and Body Surface Area. Journal of the American Society of Echocardiography, 21, 361-370.
http://www.sciencedirect.com/science/article/pii/S0894731707004403 |
[20] | Medical Sound Library (2019) Auscultate: Learn Heart Sounds, Murmurs and Medical Auscultation.
https://www.medzcool.com/auscultate |
[21] | Sun, S. (2020) A Novel Method-Based Secondary Envelope Extraction for Heart Sound Analysis. |
[22] | Solanki, D.S. (2020) Aortic Regurgitation. Rated Medicine.
https://ratedmedicine.wordpress.com/aortic-regurgitation/ |
[23] | AMBOSS (2020) AMBOSS: Medical Knowledge Distilled YouTube.
https://www.youtube.com/channel/UC8xEQrU6VhJU6pDZd-GkJWg |
[24] | Auscultation Sound (2019) Heart Murmur-Mitral Regurgitation Auscultation Sound!!! Complete.
https://www.medzcool.com/auscultate |
[25] | Patkar, R. (2020) Heart Sounds: Atrial Septal Defect. https://www.youtube.com/watch?v=bArVgcBgp4M |
[26] | Thinklabs (2019) Thinklabs Heart Sound Library. https://www.thinklabs.com/heart-sounds?hclocation=ufi |
[27] | Last Second Medicine (2017). https://www.youtube.com/channel/UCPnja4taYSqY8Ydk1W4fN8w |
[28] | Easy Auscultation (2021) Easy Auscul-tation Training—Heart and Lung Sounds.
https://www.easyauscultation.com/ |
[29] | 3M Database (2019) 50 Heart and Lung Sounds Library.
http://solutions.3m.com/wps/portal/3M/enEU/3M-Littmann-EMEA/stethoscope/littmann-learning-institute/heart-lung-sounds/heart-lung-sound-library/ |
[30] | AMBOSSMed (2019) AMBOSS: Medical Knowledge Distilled.
https://www.medzcool.com/auscultate |
[31] | Heart Sound & Murmur Library (2019). http://www.med.umich.edu/lrc/psb/heartsounds/index.htm |
[32] | Mohseni, S.S. and Mohamadyari, M. (2016) Heart Ar-rhythmias Classification via a Sequential Classifier Using Neural Network, Principal Component Analysis and Heart Rate Variation. 2016 IEEE 8th International Conference on Intelligent Systems, Sofia, 4-6 September 2016, 715-722. https://doi.org/10.1109/IS.2016.7737390 |
[33] | Kavitha, R. and Kannan, E. (2016) An Efficient Framework for Heart Disease Classification Using Feature Extraction and Feature Selection Technique in Data Mining. Proceedings of the 1st International Conference on Emerging Trends in Engineering, Technology and Science, Pudukkottai, 24-26 Feb-ruary 2016, 1-5.
https://doi.org/10.1109/ICETETS.2016.7603000 |
[34] | Guo, H.-W., Huang, Y.-S., Lin, C.-H., Chien, J.-C., Haraikawa, K. and Shieh, J.-S. (2016) Heart Rate Variability Signal Features for Emotion Recognition by Using Principal Component Analysis and Support Vectors Machine. 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering, Taichung, 31 October-2 November 2016, 274-277. https://doi.org/10.1109/BIBE.2016.40 |
[35] | Motin, M.A., Karmakar, C.K. and Palaniswami, M. (2018) Prin-cipal Component Analysis: A Novel Approach for Extracting Respiratory Rate and Heart Rate from Photoplethysmo-graphic Signal. IEEE Journal of Biomedical and Health Informatics, 22, 766-774. https://doi.org/10.1109/JBHI.2017.2679108 |
[36] | El-Saadawy, H., Tantawi, M., Shedeed, H.A. and Tolba, M.F. (2017) Electrocardiogram (ECG) Heart Disease Diagnosis Using PNN, SVM and Softmax Regression Classifiers. 2017 8th International Conference on Intelligent Computing and Information Systems, Cairo, 5-7 December 2017, 106-110. https://doi.org/10.1109/INTELCIS.2017.8260040 |
[37] | Johnson, R.A. and Wichern, D.W. (2007) Applied Multi-variate Statistical Analysis. 6th Edition, Pearson, London.
http://docshare04.docshare.tips/files/12598/125983744.pdf |