全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于荧光响应的罗非鱼去鳞质量视觉检测方法研究
Research on Visual Detection Method of Tilapia Descaling Quality Based on Fluorescence Response

DOI: 10.12677/CSA.2021.117194, PP. 1896-1905

Keywords: 罗非鱼,荧光响应,颜色特征,主成分分析,卷积神经网络
Tilapia
, Fluorescence Response, Color Characteristics, Principal Component Analysis, Convolutional Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

罗非鱼前处理过程中去鳞残留直接影响罗非鱼外观品质和商业价值,现有的检测方法具有线下分散性操作以及依赖人工经验的特点,无法满足大规模生产线作业要求。为实现快速、无损的罗非鱼去鳞质量检测,利用去鳞区域与未去鳞区域在360~370 nm波段紫外线下的不同荧光响应,通过罗非鱼加工质量在线监测系统采集图像信息,提取去鳞区域与未去鳞区域的颜色特征,采用主成分分析进行特征的降维与融合。将主成分值作为模型输入,选择卷积神经网络(CNN),构建罗非鱼去鳞质量检测模型,模型准确度97.5%、精确率98.3%、灵敏度96.7%。该方法在罗非鱼去鳞质量检测应用中具有一定潜力,可为开发实时在线检测装备提供参考。
The descaling residues in the pretreatment of tilapia directly affect the appearance quality and commercial value of tilapia. The existing detection methods have the characteristics of decentralized operation and relying on manual experience, which cannot meet the requirements of large-scale production lines. In order to achieve fast and nondestructive detection of tilapia descaling, the different fluorescence responses of descaling area and undescaled area under ultraviolet range of 360~370 nm band were used to collect image information through the online monitoring system of tilapia processing quality, and the color characteristics of descaled area and undescaled area were extracted. Principal component analysis was used for feature dimensionality redution and fusion. The principal component values were taken as the input of the model, and the convolutional neural network (CNN) was selected to construct the tilapia descaling detection model. The detection Accuracy can reach 97.5%, Precision is 98.3% and Sensitive is 96.7%. This method has certain potential in tilapia descaling detection application, and can provide a reference for the development of real-time online detection equipment.

References

[1]  秦培文, 李瑞伟, 王辉, 黄翔鹄, 宋文东. 四种罗非鱼肌肉氨基酸组成及营养价值评定[J]. 食品研究与开发, 2010, 31(2): 173-176.
[2]  程亚美, 赵金良, 宋凌元, 吴红岩, 周昊天. 盐度、碱度对尼罗罗非鱼生长和肌肉品质的影响[J]. 水产科学, 2020, 39(3): 341-349.
[3]  王煜坤, 郝淑贤, 李来好, 杨贤庆, 黄卉, 魏涯, 等. 不同地区、品种及养殖模式罗非鱼营养差异分析[J]. 食品工业科技, 2018, 39(12): 231-237.
[4]  赵志霞, 吴燕燕, 李来好, 杨贤庆, 陈胜军, 岑剑伟. 我国罗非鱼加工研究现状[J]. 食品工业科技, 2017, 38(9): 363-367, 373.
[5]  赵雲, 桂朗, 陈良标. 罗非鱼产业发展现状[J]. 中国水产, 2020(10): 46-48.
[6]  李仁杰, 孟祥毅, 钟森淼, 芦金石, 张旭, 陶学恒. 基于水射流的典型淡水鱼类去鳞技术研究[J]. 食品与机械, 2020, 36(3): 101-104.
[7]  关颖. 新型淡水鱼去鳞设备及去鳞方法问世[J]. 农产品加工(上), 2014(11): 76.
[8]  张均波. 淡水鱼机械除鳞技术研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2004.
[9]  何新宇, 赵时璐, 张震, 等. 机器视觉的研究及应用发展趋势[J]. 机械设计与制造, 2020(10): 281-283+287.
[10]  魏洪昌, 罗阳. 在农产品和食品检测中应用计算机视觉技术的研究[J]. 食品界, 2020(11): 83.
[11]  Shi, C., Qian, J., Han, S., Fan, B., Yang, X. and Wu, X. (2018) Developing a Machine Vision System for Simultaneous Prediction of Freshness Indicators Based on Tilapia (Oreochromis niloticus) Pupil and Gill Color during Storage at 4℃. Food Chemistry, 243, 134-140.
https://doi.org/10.1016/j.foodchem.2017.09.047
[12]  马商牟司, 胡志刚, 曾山, 李皞. 基于机器视觉的淡水鱼外形检测方法[J/OL]. 计算机应用: 1-6 http://kns.cnki.net/kcms/detail/51.1307.TP.20210628.1026.005.html, 2021-07-04.
[13]  Costa, C., Antonucci, F., Me-nesatti, P., Pallottino, F., Boglione, C. and Cataudella, S. (2012) An Advanced Colour Calibration Method for FSH Freshness Assessment: A Comparison between Standard and Passive Refrigeration Modalities. Food and Bioprocess Technology, 6, 2190-2195.
https://doi.org/10.1007/s11947-011-0773-6
[14]  刘金伟, 王鑫, 赵雄燕. 机械致荧光变色材料的分子结构特点及其对性能的影响[J]. 应用化工, 2019, 48(12): 3042-3045.
[15]  涂冬成. 禽肉肉色、弹性和嫩度的图像和激光诱导荧光无损检测技术研究[D]: [硕士学位论文]. 南昌: 江西农业大学, 2011.
[16]  刘凯琪, 乔宇, 刘俊杰, 吕日琴, 蔡金鑫. 基于荧光光谱技术的不同食用淀粉的快速区分[J]. 科教导刊-电子版(上旬), 2021(1): 284-286.
[17]  Yu, H., Wang, M., Cao, J., She, Y., Zhu, Y., Ye, J., et al. (2021) Dual-Mode Detection of Organophosphate Pesticides in Pear and Chinese Cabbage Based on Fluorescence and AuNPs Colorimetric Assays. Food Chemistry, 364, Article ID: 130326.
https://doi.org/10.1016/j.foodchem.2021.130326
[18]  Liu, H., Ji, Z.T., Liu, X.L., Shi, C. and Yang, X. (2020) Non-Destructive Determination of Chemical and Microbial Spoilage Indicators of Beef for Freshness Evaluation Using Front-Face Synchronous Fluorescence Spectroscopy. Food Chemistry, 321, Article ID: 126628.
https://doi.org/10.1016/j.foodchem.2020.126628
[19]  苏文华, 汤海青, 欧昌荣, 高亚文, 张梦思, 李亚敏, 等. 前表面荧光光谱法鉴别不同冷藏时间的大黄鱼鲜度[J]. 核农学报, 2020, 34(2): 339-347.
[20]  孟璐, 冯俊丽, 周聃, 姜晓娜, 戴志远. 荧光PCR定量检测鲐鱼贮藏过程中微生物及品质变化[J]. 中国食品学报, 2018, 18(2): 230-237.
[21]  谭明堂, 谢晶, 王金锋. 解冻方式对鱿鱼品质的影响[J]. 食品科学, 2019, 40(13): 94-101.
[22]  李余钱, 苏光大. 基于邻域处理器的自适应中值滤波快速实现[J]. 仪表技术与传感器, 2016(7): 120-122.
[23]  汪子君, 邱俨睿, 杨宏霄, 孙磊. 基于鲁棒Otsu的红外无损检测缺陷分割算法[J]. 红外与激光工程, 2019, 48(2): 76-84.
[24]  邓仕超, 黄寅. 二值图像膨胀腐蚀的快速算法[J]. 计算机工程与应用, 2017, 53(5): 207-211.
[25]  Garcia-Lamont, F., Cervantes, J., López, A. and Rodriguez, L. (2018) Segmentation of Images by Color Features: A Survey. Neurocomputing, 292, 1-27.
https://doi.org/10.1016/j.neucom.2018.01.091
[26]  Anwer, R.M., Khan, F.S. and Laaksonen, J. (2021) Compact Deep Color Features for Remote Sensing Scene Classification. Neural Processing Letters, 53, 1523-1544.
https://doi.org/10.1007/s11063-021-10463-4
[27]  Jafarzadegan, M., Sa-fi-Esfahani, F. and Beheshti, Z. (2019) Combining Hierarchical Clustering Approaches Using the PCA Method. Expert Systems with Applications, 137, 1-10.
https://doi.org/10.1016/j.eswa.2019.06.064
[28]  周先春, 孙文荣, 张纯伟. 基于自适应对数变换和PCA算法的人脸识别研究[J]. 电子技术应用, 2014, 40(6): 126-129.
[29]  荆瑞勇, 卫佳琪, 王丽艳, 宋维民, 郑桂萍, 郭永霞. 基于主成分分析的不同水稻品种品质综合评价[J]. 食品科学, 2020, 41(24): 179-184.
[30]  Feldmann, M.J., Hardigan, M.A., Famula, R.A., López, C.M., Amy, T., Cole, G.S., et al. (2020) Mul-ti-Dimensional Machine Learning Approaches for Fruit Shape Phenotyping in Strawberry. GigaScience, 5, Article No. giaa030.
https://doi.org/10.1093/gigascience/giaa030
[31]  卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17.
[32]  周俊宇, 赵艳明. 卷积神经网络在图像分类和目标检测应用综述[J]. 计算机工程与应用, 2017, 53(13): 34-41.
[33]  杨宁. 文本分类任务中到的常见损失函数[J]. 探索科学(学术版), 2020(4): 280-281.
[34]  Postalcolu, S. (2020) Performance Analysis of Different Optimizers for Deep Learn-ing-Based Image Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 34, Article ID: 2051003.
https://doi.org/10.1142/S0218001420510039
[35]  李思寒, 仇怀利, 吴佳, 沈彦. 基于卷积神经网络的漏液视觉检测[J]. 液晶与显示, 2021, 36(5): 741-750.
[36]  贾金寸, 邵龙闯, 罗宏驰. 卷积神经网络-损失函数[J]. 福建质量管理, 2019(13): 297.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133