全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压条件天然气水合物形成过程的分子动力学模拟
Molecular Dynamics Simulation of Gas Hydrate Formation Process under High Pressure Condition

DOI: 10.12677/APP.2021.116039, PP. 328-336

Keywords: 甲烷,天然气水合物,分子模拟,分子动力学,环统计,形成机理
Methane
, Natural Gas Hydrate, Molecular Simulation, Molecular Dynamics, Ring Statistics, Formation Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

天然气水合物作为一种潜在的清洁能源已经引起广泛关注,为了更好地开发利用该资源必须对其形成机理进行充分了解和精准分析。本工作采用分子动力学方法旨在揭示1 GPa条件下天然气水合物的形成及结构演化。通过径向分布函数、均方根位移及环统计手段对研究体系的甲烷分子和水分子的行为及其周围环境进行分析。模拟结果表明,研究范围内温度对天然气水合物的结构影响不大,但对天然气水合物的生成数量具有明显的影响。环统计分析表明研究体系生成的五元环数量众多且相互联接而生成的六元环数量较少且孤立存在,两者数量比约为5:1。
As a potential clean energy source, natural gas hydrate (NGH) has attracted wide attention. Sufficient understanding and accurate analyses for the complex formation mechanism in a natural gas hydrate system have to occur before the hydrate untilization. In this paper, molecular dynamics simulation is carried out to explore the formation and structure patterns under 1 GPa conditions. Radial distribution function, mean square displacement and ring statistics provide important insights into the behavior of the methane and water molecules present in the system. The simulations show that the structure of nature gas hydrate keeps unchanged at different temperatures, while the amount of gas hydrate is significantly influenced by temperature. Ring statistics were used to interpret that the five rings number is more and all connected, a small number of six rings for isolated form, the ratio is 5:1.

References

[1]  Sloan, E.D. (1998) Clathrate Hydrates of Natural Gases. Dekker, New York, 45-102.
[2]  Song, Y., Zhang, L., Lv, Q., et al. (2016) Assessment of Gas Production from Natural Gas Hydrate Using Depressurization, Thermal Stimulation and Combined Methods. RSC Advances, 6, 47357-47367.
https://doi.org/10.1039/C6RA05526E
[3]  吴时国, 王吉亮. 南海神狐海域天然气水合物试采成功后的思考[J]. 科学通报, 2018, 63(1): 2-8.
[4]  Maghsoodloo, B.S., Bouillot, B., Ho-Van, S., et al. (2018) A Review on Hydrate Composition and Capability of Thermodynamic Modeling to Predict Hydrate Pressure and Composition. Fluid Phase Equilibria, 472, 22-38.
https://doi.org/10.1016/j.fluid.2018.05.007
[5]  Stern, L.A., Circone, S., Kirby, S.H., et al. (2001) Anomalous Preservation of Pure Methane Hydrate at 1 atm. Journal of Physical Chemistry B, 105, 1756-1762.
https://doi.org/10.1021/jp003061s
[6]  Nakoryakov, V.E. and Misyura, S. (2013) The Features of Self-Preservation for Hydrate Systems with Methane. Chemical Engineering Science, 104, 1-9.
https://doi.org/10.1016/j.ces.2013.08.049
[7]  Rehder, G., Eckl, R., Elfgen, M., et al. (2012) Methane Hydrate Pellet Transport Using the Self-Preservation Effect: A Techno-Economic Analysis. Energies, 5, 2499-2523.
https://doi.org/10.3390/en5072499
[8]  Wen, Y.G., Chen, Q.X., Chen, Y.W., et al. (2013) Research Progress on Hydrate Self-Preservation Effect Applied to Storage and Transportation of Natural Gas. Advanced Materials Research, 772, 795-801.
https://doi.org/10.4028/www.scientific.net/AMR.772.795
[9]  Chatti, I., Delahaye, A., Fournaison, L., et al. (2005) Benefits and Drawbacks of Clathrate Hydrates: A Review of Their Areas of Interest. Energy Conversion and Management, 46, 1333-1343.
https://doi.org/10.1016/j.enconman.2004.06.032
[10]  Javanmardi, J., Nasrifar, K., Najibi, S.H., et al. (2005) Eco-nomic Evaluation of Natural Gas Hydrate as an Alternative for Natural Gas Transportation. Applied Thermal Engineering, 25, 1708-1723.
https://doi.org/10.1016/j.applthermaleng.2004.10.009
[11]  Ali, E., Amir, H.M., Dominique, R., et al. (2012) Ap-plication of Gas Hydrate Formation in Separation Processes: A Review of Experimental Studies. The Journal of Chemi-cal Thermodynamics, 46, 62-71.
https://doi.org/10.1016/j.jct.2011.10.006
[12]  Sloan, E.D. (2003) Fundamental Principles and Applications of Natural Gas Hydrates. Nature, 426, 353-359.
https://doi.org/10.1038/nature02135
[13]  Ning, F., Yu, Y., Kjelstrup, S., et al. (2012) Mechanical Properties of Clathrate Hydrates: Status and Perspectives. Energy and Environmental Science, 5, 6779-6795.
https://doi.org/10.1039/c2ee03435b
[14]  Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19.
https://doi.org/10.1006/jcph.1995.1039
[15]  Mondal, S., Ghosh, S., Chattaraj, P.K., et al. (2013) A Molecular Dynamics Study on SI Hydrogen Hydrate. Journal of Molecular Modeling, 19, 2785-2790.
https://doi.org/10.1007/s00894-012-1625-7
[16]  Yi, L., Liang, D., Zhou, X., et al. (2014) Molecular Dynamics Simulations for the Growth of CH4-CO2 Mixed Hydrate. Journal of Energy Chemistry, 23, 747-754.
https://doi.org/10.1016/S2095-4956(14)60208-4
[17]  Wei, N., Sun, W., Meng, Y., et al. (2018) Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation. Russian Journal of Physical Chemistry A, 92, 840-846.
https://doi.org/10.1134/S0036024418050345
[18]  Varini, N., English, N.J. and Trott, C.R. (2012) Molecular Dynamics Simulations of Clathrate Hydrates on Specialised Hardware Platforms. Energies, 5, 3526-3533.
https://doi.org/10.3390/en5093526
[19]  Fu, J., Bernard, F., Kamali-Bernard, S., et al. (2018) Assessment of the Elastic Properties of Amorphous Calcium Silicates Hydrates (I) and (II) Structures by Molecular Dynamics Simulation. Molecular Simulation, 44, 285-299.
https://doi.org/10.1080/08927022.2017.1373191
[20]  Roux, S.L. and Jund, P. (2010) Ring Statistics Analysis of Topological Networks: New Approach and Application to Amorphous GeS2 and SiO2 Systems. Computational Materials Science, 49, 70-83.
https://doi.org/10.1016/j.commatsci.2010.04.023
[21]  Wilson, M. and Jenkins, H. (2018) Crystalline Thin Films of Silica: Modelling, Structure and Energetics. Journal of Physics-Condensed Matter, 30, Article ID: 475401.
https://doi.org/10.1088/1361-648X/aae503
[22]  Micoulaut, M., Piarristeguy, A., Flores-Ruiz, H., et al. (2017) Towards Accurate Models for Amorphous GeTe: Crucial Effect of Dispersive van der Waals Corrections on the Structural Properties Involved in the Phase-Change Mechanism. Physical Review B, 96, Article ID: 184204.
https://doi.org/10.1103/PhysRevB.96.184204
[23]  Chakraborty, S., Boolchand, P. and Micoulaut, M. (2017) Structural Properties of Ge-S Amorphous Networks in Relationship with Rigidity Transitions: An ab initio Molecular Dynamics Study. Physical Review B, 96, Article ID: 094205.
https://doi.org/10.1103/PhysRevB.96.094205
[24]  Flores-Ruiz, H., Micoulaut, M. and Coulet, M.V. (2015) Effect of Tellurium Concentration on the Structural and Vibrational Properties of Phase-Change Ge-Sb-Te Liquids. Physical Review B, 92, Article ID: 134205.
https://doi.org/10.1103/PhysRevB.92.134205
[25]  Abascal, J.L.F. and Vega, C. (2005) A General Purpose Model for the Condensed Phases of Water: TIP4P/2005. The Journal of Chemical Physics, 123, Article ID: 234505.
https://doi.org/10.1063/1.2121687
[26]  William, L.J. (1986) Optimized Intermolecular Potential Functions for Liquid Alcohols. The Journal of Physical Chemistry A, 90, 1276-1284.
https://doi.org/10.1021/j100398a015
[27]  Waage, M.H., Trinh, T.T., Van Erp, T.S., et al. (2018) Diffusion of Gas Mixtures in the sI Hydrate Structure. Journal of Chemical Physics, 148, Article ID: 214701.
https://doi.org/10.1063/1.5026385
[28]  Kondori, J., Zendehboudi, S., Hossain, M.E., et al. (2017) A Review on Simulation of Methane Production from Gas Hydrate Reservoirs: Molecular Dynamics Prospective. Journal of Petroleum Science and Engineering, 159, 754-772.
https://doi.org/10.1016/j.petrol.2017.09.073
[29]  Loveday, J.S. and Nelmes, R.J. (2008) High-Pressure Gas Hydrates. Physical Chemistry Chemical Physics, 10, 937-950.
https://doi.org/10.1039/B704740A
[30]  Cobb, M., Drabold, D.A. and Cappelletti, R.L. (1996) Ab Initio Molecular-Dynamics Study of the Structural, Vibrational, and Electronic Properties of Glassy GeSe2. Physical Review B Condensed Matter, 54, 12162-12171.
https://doi.org/10.1103/PhysRevB.54.12162

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133