全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进LSTM算法的雾霾天气预测
Haze Weather Forecast Based on Improved LSTM Algorithm

DOI: 10.12677/CSA.2021.117190, PP. 1853-1868

Keywords: 雾霾预测,BP神经网络,深度学习,长短期记忆网络
Smog Forecast
, BP Neural Network, Deep Learning, Long and Short-Term Memory Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着科技的发展与时代的进步,能源消耗加剧,人们的环保意识逐渐减弱,城市污染日益严重。在综合国力飞速前进的同时,许多环境问题接踵而至。其中最具代表性的就是城市雾霾问题,雾霾是一种危害人体健康的物质,它会危害人体呼吸道从而导致多种呼吸道疾病。因此,治霾防霾就显得尤为重要,这是一个任重而道远的过程,当下并没有较为有效的方法来彻底解决雾霾污染问题。因此本文提出了BP神经网络和以深度学习为基础的长短时记忆网络来预测雾霾天气情况,并且对模型做出了优化,使其能够更加有效准确地预测。通过引入各项具有时间序列特性的数据,例如大气污染物、不同空间地理上检测出的影响因子要素和气象因素等,经过LSTM模型的运算整合,形成波形图直观的显示出未来一段时间内的雾霾天气情况。
With the development of science and technology and the progress of the times, energy consumption has intensified, people’s awareness of environmental protection has gradually weakened, and urban pollution has become increasingly serious. While the overall national strength is advancing rapidly, many environmental problems have followed one after another. The most representative one is the problem of urban smog. Smog is a substance that is harmful to human health. It will harm the human respiratory tract and cause a variety of respiratory diseases. Therefore, the treatment of smog and the prevention of smog are particularly important. This is a process with a long way to go, and there is no effective way to completely solve the problem of smog pollution. Therefore, this paper proposes a BP neural network and a long and short-term memory network based on deep learning to predict haze weather conditions, and optimizes the model to make it more effective and accurate. Through the introduction of various data with time series characteristics, such as atmospheric pollutants, influencing factors detected in different spatial geography, and meteorological factors, through the operation and integration of the LSTM model, a waveform chart is formed to intuitively show the future period of time Haze weather conditions in China.

References

[1]  王恰. 基于Attention Bi-LSTM的文本分类方法研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2018.
[2]  黄宇, 韩璞, 王东风, 张婧. 基于BP神经网络整定的PID控制在过热汽温系统中的应用[J]. 仪器仪表学报, 2006(z3): 1980-1981
[3]  于胜. BP神经网络股票分析模型系统的设计与实现[D]: [硕士学位论文]. 成都: 电子科技大学, 2010.
[4]  王一蕾, 卓一帆, 吴英杰, 陈铭钦. 基于深度神经网络的图像碎片化信息问答算法[J]. 计算机研究与发展, 2018, 55(12): 2600-2610.
[5]  沈亚田, 黄萱菁, 曹均阔. 使用深度长短时记忆模型对于评价词和评价对象的联合抽取[J]. 中文信息学报, 2018, 32(2): 110-119.
[6]  陈德鑫, 占袁圆, 杨兵. 深度学习技术在教育大数据挖掘领域的应用分析[J]. 电化教育研究, 2019, 40(2): 68-76.
[7]  王梓霖. 基于深度学习的雾霾浓度预测[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2019.
[8]  徐海燕. 基于非负矩阵分解的空域图像自适应隐写与隐写分析研究[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2019.
[9]  翁克瑞, 刘淼, 刘钱. TPE-XGBOOST与LassoLars组合下PM2.5浓度分解集成预测模型研究[J]. 系统工程理论与实践, 2020, 40(3): 748-760.
[10]  刘达, 雷自强, 孙堃. 基于小波包分解和长短期记忆网络的短期电价预测[J]. 智慧电力, 2020, 48(4): 77-83.
[11]  韩兆洲, 方泽润. 基于GIOWHA-GALSSVR-SARIMA组合模型在旅游需求预测中的应用[J]. 数学的实践与认识, 2019, 49(19): 69-79.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133