|
一种模拟飞虫视觉运动感知的U-LSPIV测量系统
|
Abstract:
[1] | Fujita, I., Muste, M. and Kruger, A. (1998) Large-Scale Particle Image Velocimetry for Flow Analysis in Hydraulic En-gineering Applications. Journal of Hydraulic Research, 36, 397-414. https://doi.org/10.1080/00221689809498626 |
[2] | Jodeau, M., Hauet, A., Paquier, A., Coz, J.L. and Dramais, G. (2008) Application and Evaluation of LS-PIV Technique for the Monitoring of River Surface Velocities in High Flow Conditions. Flow Measurement and Instrumentation, 19, 117-127. https://doi.org/10.1016/j.flowmeasinst.2007.11.004 |
[3] | Muste, M., Fujita, I. and Hauet, A. (2008) Large-Scale Particle Image Velocimetry for Measurements in Riverine Environments. Water Resources Research, 44, W00D19. https://doi.org/10.1029/2008WR006950 |
[4] | Bechle, A.J., Wu, C.H., Liu, W.C. and Kimura, N. (2012) Develop-ment and Application of an Automated River-Estuary Discharge Imaging System. Journal of Hydraulic Engineering, 138, 327-339.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000521 |
[5] | Dobson, D.W., Holland, K.T. and Calantoni, J. (2014) Large-Scale Particle Image Velocimetry-Based Estimations of River Surface Velocity. Computers & Geosciences, 70, 35-43. https://doi.org/10.1016/j.cageo.2014.05.007 |
[6] | Tauro, F., Olivieri, G., Petroselli, A., Porfiri, M. and Grimaldi, S. (2016) Flow Monitoring with a Camera: A Case Study on a Flood Event in the Tiber River. Environmental Monitoring & Assessment, 188, 1-11.
https://doi.org/10.1007/s10661-015-5082-5 |
[7] | Fujita, I., Notoya, Y., Tani, K. and Tateguchi, S. (2019) Efficient and Accurate Estimation of Water Surface Velocity in STIV. Environmental Fluid Mechanics, 19, 1363-1378. https://doi.org/10.1007/s10652-018-9651-3 |
[8] | Tauro, F., Pagano, C., Phamduy, P., Grimaldi, S., et al. (2015) Large-Scale Particle Image Velocimetry from an Unmanned Aerial Vehicle. IEEE/ASME Transactions on Mechatronics, 20, 3269-3275.
https://doi.org/10.1109/TMECH.2015.2408112 |
[9] | Tauro, F., Porfiri, M. and Grimaldi, S. (2014) Orienting the Camera and Firing Lasers to Enhance Large Scale Particle Image Velocimetry for Streamflow Monitoring. Water Re-sources Research, 50, 7470-7483.
https://doi.org/10.1002/2014WR015952 |
[10] | Xu, M.X., Wu, X.B., Zhang, Z. and Lu, Y.Y. (2021) Compound-Eye Imaging Imitation-Based Whole-Field Flow Measurement. Computers and Electrical Engineering, 92, Article ID: 107141.
https://doi.org/10.1016/j.compeleceng.2021.107141 |
[11] | 赵浩源, 陈华, 刘维高, 黄凯霖, 刘炳义. 基于河流表面时空图像识别的测流方法[J]. 水资源研究, 2020, 9(1): 1-11. |
[12] | Paulk, A., Millard, S.S. and van Swinderen, B. (2013) Vision in Drosophila: Seeing the World through a Model’s Eyes. Annual Review of Entomology, 58, 313-332. https://doi.org/10.1146/annurev-ento-120811-153715 |
[13] | Fabian, J.M., Dunbier, J.R., O’Carroll, D.C. and Wiederman, S.D. (2019) Properties of Predictive Gain Modulation in a Dragonfly Visual Neuron. Journal of Experi-mental Biology, 222, jeb207316. https://doi.org/10.1242/jeb.207316 |
[14] | Borst, A., Haag, J. and Mauss, A.S (2020) How Fly Neurons Compute the Direction of Visual Motion. Journal of Comparative Physiology A, 206, 109-124. https://doi.org/10.1007/s00359-019-01375-9 |
[15] | 徐梦溪, 王慧斌, 陈婷, 张振, 郑胜男. 三通道同步偏振成像及观测目标检测方法[J]. 仪器仪表学报, 2013, 34(11): 2408-2417. |
[16] | Xu, M.X., Wang, X., Yan, X.J., Lv, G.F., Zheng, S.N. and Wang, H.B. (2013) Polarization Imaging Target Detection Method by Imitating Dragonfly Compound Eye LF-SF Mechanism. 2013 International Conference on Precision Mechanical Instruments and Measurement Tech-nology (ICPMIMT 2013), Shenyang, 25-26 May 2013, 2692-2694. |
[17] | 徐梦溪, 施建强. 仿生复眼型多源监测数据融合与专题信息提取[J]. 水利信息化, 2021(1): 71-75. |
[18] | Kim, Y., Muste, M., Hauet, A., Krajewski, W.F., Kruger, A. and Bradley, A. (2008) Stream Discharge Using Mobile Large-Scale Particle Image Velocimetry: A Proof of Concept. Water Resources Research, 44, W09502.
https://doi.org/10.1029/2006WR005441 |
[19] | Wang, X., Shen, S.Q., Ning, C., Xu, M.X. and Yan, X.J. (2015) A Sparse Representation-Based Method for Infrared Dim Target Detection under Sea-Sky Background. Infrared Physics & Technology, 71, 347-355.
https://doi.org/10.1016/j.infrared.2015.05.014 |