全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于需求文档和图神经网络的需求知识图谱构建方法
Construction Method of Requirement Knowledge Graph Based on Requirement Document and Graph Neural Network

DOI: 10.12677/CSA.2021.116178, PP. 1725-1737

Keywords: 知识图谱,需求文档,可视化,图神经网络
Knowledge Graph
, Requirement Document, Visualization, Graph Neural Network

Full-Text   Cite this paper   Add to My Lib

Abstract:

知识图谱可以将大量不同种类信息连成一个语义网络,为人工智能相关的研究提供了从“关系”层面解释分析问题的能力。因此,构建各领域知识图谱成了近年来的研究热点。然而对于服务需求领域知识图谱的构建研究较少,针对这一现状,本文提出了一种基于需求文档和图神经网络的需求知识图谱构建方法,该方法以100条公司真实需求文档为数据源,结合传统自然语言处理方法和图神经网络分类模型,通过知识抽取、人工标注、需求特征编码、需求分类、需求图谱存储和可视化等5个步骤来进行服务需求领域知识图谱的构建。实验表明该方法可以有效地从大量非结构化需求文档中提取到需求语义信息,并通过图神经网络分类模型较准确地识别需求意图,从而结合图数据库和可缩放矢量图可视化技术将需求图谱进行轻量级存储和可视化展示。
The knowledge graph can connect a large number of different kinds of information into a semantic network, and provides the ability to explain and analyze problems from the “relationship” level for the AI related research. Therefore, the construction of knowledge graph in various fields has become a research hotspot in recent years. But there are few ways to build a requirement knowledge graph. In order to solve this problem, this paper proposes a requirement knowledge graph construction method based on requirement document and graph neural network. The method takes 100 real company requirement documents as the data source. Combined with the traditional natural language processing method and the graph neural network classification model, through knowledge extraction, manual annotation, requirement feature coding, requirement classification, requirement graph storage and visualization, the knowledge graph for the requirements domain will have been successfully constructed. Experiments show that this method can effectively extract requirement semantic information from a large number of unstructured requirement documents, and identify requirement intention more accurately through the graphical neural network classification model. Thus, combined with graph database and scalable vector graph of visualization technology, the requirement graph is lightweight-stored and visualized.

References

[1]  Singhal, A. (2012) Introducing the Knowledge Graph: Things, Not Strings. Official Google Blog.
https://blog.google/products/search/introducing-knowledge-graph-things-not
[2]  林杰, 苗润生. 专业社交媒体中的主题图谱构建方法研究——以汽车论坛为例[J]. 情报学报, 2020, 39(1): 68-80.
[3]  王丹, 张海涛, 刘嫣, 等. 全景生态视角的微博舆情多维图谱构建研究[J]. 情报学报, 2019, 38(12): 1275-1285.
[4]  丁晟春, 侯琳琳, 王颖. 基于电商数据的产品知识图谱构建研究[J]. 数据分析与知识发现, 2019, 3(3): 45-56.
[5]  吕华揆, 洪亮, 马费成. 金融股权知识图谱构建与应用[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
[6]  周莉娜, 洪亮, 高子阳. 唐诗知识图谱的构建及其智能知识服务设计[J]. 图书情报工作, 2019, 63(2): 24-33.
[7]  Wang, S., Huang, C., Li, J., et al. (2019) Decentralized Construction of Knowledge Graphs for Deep Recommender Systems Based on Block-chain-Powered Smart Contracts. IEEE Access, 7, 136951-136961.
https://doi.org/10.1109/ACCESS.2019.2942338
[8]  Iglesias, M. (2019) Pro D3. js. Apress, Berkeley.
https://doi.org/10.1007/978-1-4842-5203-1
[9]  Vukotic, A., Watt, N., Abedrabbo, T., et al. (2014) Neo4j in Action. Manning Publications Co., Shelter Island.
[10]  袁文宜. 依存语法概述[J]. 科技情报开发与经济, 2010(18): 158-160.
[11]  王一宾, 陈文莉, 陈义仁. 语法分析方法研究评述及其应用[J]. 计算机工程与设计, 2007(13): 3063-3065.
[12]  Che, W.X., Li, Z.H. and Liu, T. (2010) LTP: A Chinese Language Technology Plat-form. Proceedings of the COLING 2010: Demonstrations, Beijing, 13-16 August 2010, 13-16.
[13]  Zhang, H.Q., Lu, G.Q., Zhan, M.M. and Zhang, B.X. (2021) Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints. Neural Processing Letters.
https://doi.org/10.1007/s11063-020-10404-7
[14]  Wu, Z., Pan, S., Chen, F., et al. (2019) A Comprehensive Survey on Graph Neural Networks.
[15]  Pope, P.E., Kolouri, S., Rostami, M., et al. (2020) Explain Ability Methods for Graph Convolutional Neural Networks. 2019 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 16-20 June 2019, 10764-10773.
https://doi.org/10.1109/CVPR.2019.01103
[16]  Navarin, N., Tran, D.V. and Sperduti, A. (2019) Universal Readout for Graph Convolutional Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN) IEEE, Budapest, 14-19 July 2019, 20243-20249.
https://doi.org/10.1109/IJCNN.2019.8852103
[17]  Yan, S., Xiong, Y. and Lin, D. (2018) Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. The Thirty-Second AAAI Conference on Artifi-cial Intelligence (AAAI 2018), New Orleans, 2-7 February 2018, 7444-7452.
https://arxiv.org/pdf/1801.07455.pdf
[18]  Zhang, Q., Zhang, M., Chen, T., et al. (2019) Recent Advances in Convolutional Neural Network Acceleration. Neurocomputing, 323, 37-51.
https://arxiv.org/pdf/1807.08596.pdf
https://doi.org/10.1016/j.neucom.2018.09.038
[19]  陈璟浩, 曾桢, 李纲. 基于知识图谱的“一带一路”投资问答系统构建[J]. 图书情报工作, 2020, 64(12): 95-105.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133