|
基于需求文档和图神经网络的需求知识图谱构建方法
|
Abstract:
[1] | Singhal, A. (2012) Introducing the Knowledge Graph: Things, Not Strings. Official Google Blog.
https://blog.google/products/search/introducing-knowledge-graph-things-not |
[2] | 林杰, 苗润生. 专业社交媒体中的主题图谱构建方法研究——以汽车论坛为例[J]. 情报学报, 2020, 39(1): 68-80. |
[3] | 王丹, 张海涛, 刘嫣, 等. 全景生态视角的微博舆情多维图谱构建研究[J]. 情报学报, 2019, 38(12): 1275-1285. |
[4] | 丁晟春, 侯琳琳, 王颖. 基于电商数据的产品知识图谱构建研究[J]. 数据分析与知识发现, 2019, 3(3): 45-56. |
[5] | 吕华揆, 洪亮, 马费成. 金融股权知识图谱构建与应用[J]. 数据分析与知识发现, 2020, 4(5): 27-37. |
[6] | 周莉娜, 洪亮, 高子阳. 唐诗知识图谱的构建及其智能知识服务设计[J]. 图书情报工作, 2019, 63(2): 24-33. |
[7] | Wang, S., Huang, C., Li, J., et al. (2019) Decentralized Construction of Knowledge Graphs for Deep Recommender Systems Based on Block-chain-Powered Smart Contracts. IEEE Access, 7, 136951-136961.
https://doi.org/10.1109/ACCESS.2019.2942338 |
[8] | Iglesias, M. (2019) Pro D3. js. Apress, Berkeley. https://doi.org/10.1007/978-1-4842-5203-1 |
[9] | Vukotic, A., Watt, N., Abedrabbo, T., et al. (2014) Neo4j in Action. Manning Publications Co., Shelter Island. |
[10] | 袁文宜. 依存语法概述[J]. 科技情报开发与经济, 2010(18): 158-160. |
[11] | 王一宾, 陈文莉, 陈义仁. 语法分析方法研究评述及其应用[J]. 计算机工程与设计, 2007(13): 3063-3065. |
[12] | Che, W.X., Li, Z.H. and Liu, T. (2010) LTP: A Chinese Language Technology Plat-form. Proceedings of the COLING 2010: Demonstrations, Beijing, 13-16 August 2010, 13-16. |
[13] | Zhang, H.Q., Lu, G.Q., Zhan, M.M. and Zhang, B.X. (2021) Semi-Supervised Classification of Graph Convolutional Networks with Laplacian Rank Constraints. Neural Processing Letters. https://doi.org/10.1007/s11063-020-10404-7 |
[14] | Wu, Z., Pan, S., Chen, F., et al. (2019) A Comprehensive Survey on Graph Neural Networks. |
[15] | Pope, P.E., Kolouri, S., Rostami, M., et al. (2020) Explain Ability Methods for Graph Convolutional Neural Networks. 2019 IEEE/CVF Con-ference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 16-20 June 2019, 10764-10773. https://doi.org/10.1109/CVPR.2019.01103 |
[16] | Navarin, N., Tran, D.V. and Sperduti, A. (2019) Universal Readout for Graph Convolutional Neural Networks. 2019 International Joint Conference on Neural Networks (IJCNN) IEEE, Budapest, 14-19 July 2019, 20243-20249.
https://doi.org/10.1109/IJCNN.2019.8852103 |
[17] | Yan, S., Xiong, Y. and Lin, D. (2018) Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. The Thirty-Second AAAI Conference on Artifi-cial Intelligence (AAAI 2018), New Orleans, 2-7 February 2018, 7444-7452. https://arxiv.org/pdf/1801.07455.pdf |
[18] | Zhang, Q., Zhang, M., Chen, T., et al. (2019) Recent Advances in Convolutional Neural Network Acceleration. Neurocomputing, 323, 37-51. https://arxiv.org/pdf/1807.08596.pdf https://doi.org/10.1016/j.neucom.2018.09.038 |
[19] | 陈璟浩, 曾桢, 李纲. 基于知识图谱的“一带一路”投资问答系统构建[J]. 图书情报工作, 2020, 64(12): 95-105. |