|
Pure Mathematics 2021
平方根功能反应捕食者–食饵模型的Hopf分支
|
Abstract:
[1] | Ajraldi, V., Pittavino, M. and Venturino, E. (2011) Modeling Herd Behavior in Population Systems. Nonlinear Analysis: Real World Applications, 12, 2319-2338. https://doi.org/10.1016/j.nonrwa.2011.02.002 |
[2] | Braza, P.A. (2012) Predator-Prey Dynamics with Square Root Functional Responses. Nonlinear Analysis: Real World Applications, 13, 1837-1843. https://doi.org/10.1016/j.nonrwa.2011.12.014 |
[3] | Ma, X.M., Shao, Y.F. and Wang, Z. (2016) An Impulsive Two-Stage Predator-Prey Model with Stage-Structure and Square Root Functional Responses. Mathematics and Computers in Simulation, 119, 91-107.
https://doi.org/10.1016/j.matcom.2015.08.009 |
[4] | Salman, S.M., Yousef, A.M. and Elsadany, A.A. (2016) Sta-bility, Bifurcation Analysis and Chaos Control of a Discrete Predator-Prey System with Square Root Functional Re-sponse. Chaos, Solitons & Fractals, 93, 20-31.
https://doi.org/10.1016/j.chaos.2016.09.020 |
[5] | Bulai, I.M. and Venturino, E. (2017) Shape Effects on Herd Behavior in Ecological Interacting Population Models. Mathematics and Computers in Simulation, 141, 40-55. https://doi.org/10.1016/j.matcom.2017.04.009 |
[6] | Panja, P. (2020) Combine Effects of Square Root Functional Response and Prey Refuge on Predatorprey Dynamics. International Journal of Modelling and Simulation. https://doi.org/10.1080/02286203.2020.1772615 |
[7] | Kuznetsov, Y.A. (2013) Elements of Applied Bifurcation Theory. Springer Science & Business Media, New York.
https://doi.org/10.1007/978-1-4757-3978-7 |
[8] | Hale, J.K. and Kocak, H. (1991) Dynamics and Bifurcations. Springer, New York.
https://doi.org/10.1007/978-1-4612-4426-4 |