全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

平方根功能反应捕食者–食饵模型的Hopf分支
Hopf Bifurcation of the Square Root Functional Response Predator-Prey Model

DOI: 10.12677/PM.2021.116138, PP. 1250-1256

Keywords: 捕食者–食饵模型,避难所,稳定性,Hopf分支
Predator-Prey Model
, Prey Refuge, Stability, Hopf Bifurcation

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究具有避难所的平方根功能反应捕食者–食饵模型的Hopf分支的方向和分支周期解的稳定性。结果表明,当避难所作为参数等于一个阈值时,它会发生Hopf分支。
In this paper, we investigate the direction of Hopf bifurcation and the stability of periodic solution of the bifurcation in a predator-prey model with the square root functional response. The results show that Hopf bifurcation occurs when the refuge as a parameter is equal to a threshold.

References

[1]  Ajraldi, V., Pittavino, M. and Venturino, E. (2011) Modeling Herd Behavior in Population Systems. Nonlinear Analysis: Real World Applications, 12, 2319-2338.
https://doi.org/10.1016/j.nonrwa.2011.02.002
[2]  Braza, P.A. (2012) Predator-Prey Dynamics with Square Root Functional Responses. Nonlinear Analysis: Real World Applications, 13, 1837-1843.
https://doi.org/10.1016/j.nonrwa.2011.12.014
[3]  Ma, X.M., Shao, Y.F. and Wang, Z. (2016) An Impulsive Two-Stage Predator-Prey Model with Stage-Structure and Square Root Functional Responses. Mathematics and Computers in Simulation, 119, 91-107.
https://doi.org/10.1016/j.matcom.2015.08.009
[4]  Salman, S.M., Yousef, A.M. and Elsadany, A.A. (2016) Sta-bility, Bifurcation Analysis and Chaos Control of a Discrete Predator-Prey System with Square Root Functional Re-sponse. Chaos, Solitons & Fractals, 93, 20-31.
https://doi.org/10.1016/j.chaos.2016.09.020
[5]  Bulai, I.M. and Venturino, E. (2017) Shape Effects on Herd Behavior in Ecological Interacting Population Models. Mathematics and Computers in Simulation, 141, 40-55.
https://doi.org/10.1016/j.matcom.2017.04.009
[6]  Panja, P. (2020) Combine Effects of Square Root Functional Response and Prey Refuge on Predatorprey Dynamics. International Journal of Modelling and Simulation.
https://doi.org/10.1080/02286203.2020.1772615
[7]  Kuznetsov, Y.A. (2013) Elements of Applied Bifurcation Theory. Springer Science & Business Media, New York.
https://doi.org/10.1007/978-1-4757-3978-7
[8]  Hale, J.K. and Kocak, H. (1991) Dynamics and Bifurcations. Springer, New York.
https://doi.org/10.1007/978-1-4612-4426-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133