全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Study of Habitat’s Thermal Performance Equipped with an Adsorption Cooling Unit by Geothermal Heat Pump

DOI: 10.4236/jpee.2021.98003, PP. 26-52

Keywords: Cooling, Habitat, Adsorption, Geothermal, Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work concerns a modeling of habitat equipped with an adsorption cooling unit powered by a geothermal heat pump in the context of the climate of the Comoros Islands. Cooling unit is a simple system consisting of an adsorber, condenser and evaporator. The modeling of the habitat-air conditioning system was based on a description of heat and mass transfers. The first law of thermodynamics on the energy conservation using the analogies between heat and electrical transfers is used to establish the equations of the model. Zeolite-methanol pair and Dubinin-Astakhov adsorption model are used to describe the amount of adsorbed mass. The finite difference method applied to a point of the considered exchange surface is used to discretize equations and resolve them. The coupling of the system takes place through a convective transfer between the air inside habitat and the evaporator’s surface. This article presents results for typical November days in Comoros. Different temperatures of habitat with and without a cooling unit show that using the adsorption cooling unit can help lower internal temperatures. We observe a temperature difference of 2.14 K in particular at 2 p.m., if the air conditioning starts at 8 a.m. The influence of the input parameters on the air inside the habitat makes it possible to assess the impact on indoor comfort. The COPth can reach 0.46. However, we can get a high performance if we optimize temperature thresholds. These show that this type of cooling unit can help improve the habitat thermal comfort in a tropical and dry climate.

References

[1]  Isaac, M. and van Vuuren, D.P. (2009) Modeling Global Residential Sector Energy Demand for Heating and Conditionning in the Context of Climate Change. Energy Policy, 37, 507-521.
https://doi.org/10.1016/j.enpol.2008.09.051
[2]  Saha, B.B., Akisawa, A. and Kashiwagi, T. (2001) Solar/Waste Heat Driven Two-Stage Adsorption Chiller: The Prototype. Renewable Energy, 23, 93-101.
https://doi.org/10.1016/S0960-1481(00)00107-5
[3]  Camara, Y., Chesneau, X. and Kante, C. (2018) Contribution to the Improvement of Thermal Comfort in a Bioclimatic Building by Integration of a Phase Change Material. International Journal of Engineering Research and science & Technologie, 7, 1-24.
[4]  Do, J., Cha, D., Park, I., Kwon, O.K., Bae, J. and Park, J. (2019) Hydrothermal Synthesis and Application of Adsorbent Coating for Adsorption Chiller. Progress in Organic Coatings, 128, 59-68.
https://doi.org/10.1016/j.porgcoat.2018.12.011
[5]  Ilis, G.G. (2017) Influence of New Adsorbents with Isotherm Type V on Performance of an Adsorption Heat Pump. Energy, 119, 86-93.
https://doi.org/10.1016/j.energy.2016.12.053
[6]  Bonaccorsi, L., Calabrese, L., Freni, A. and Proverbio, E. (2013) Hydrothermal and Microwave Synthesis of SAPO (CHA) Zeolites on Aluminium Foams for Heat Pumping Applications. Microporous Mesoporous Materials, 167, 30-37.
https://doi.org/10.1016/j.micromeso.2012.06.006
[7]  Wittstadt, U., Fueldner, G., Andersen, O., Herrmann, R. and Schmidt, F. (2015) A New Adsorbent Composite Material Based on Metal Fiber Technology and Its Application in Adsorption Heat Exchangers. Energies, 8, 8431-8446.
https://doi.org/10.3390/en8088431
[8]  Eun, T.-H., Song, H.-K., Han, J.H., Lee, K.-H. and Kim, J.-N. (2000) Enhancement of Heat and Mass Transfer in Silica-Expanded Graphite Composite Blocks for Adsorption Heat Pumps. Part II. Cooling System Using the Composite Blocks. International Journal of Refrigeration, 23, 74-81.
https://doi.org/10.1016/S0140-7007(99)00036-5
[9]  Rocky, K.A., Islam, M.A., Pal, A., Ghosh, S., Thu Nasruddin, K. and Saha, B.B. (2020) Experimental Investigation of the Specific Heat Capacity of Parent Materials and Composite Adsorbents for Adsorption Heat Pumps. Applied Thermal Engineering, 164, Article ID: 114431.
[10]  Seol, S.-H., Nagano, K. and Togawa, J. (2020) Modeling of Adsorption Heat Pump System Based on Experimental Estimation of Heat and Mass Transfer Coefficients. Applied Thermal Engineering, 171, Article ID: 115089.
[11]  Dawoud, B. (2013) Water Vaporadsorption Kinetics on Small and Full Scale Zeolite Coated Adsorbers: A Comparison. Applied Thermal Engineering, 50, 1645-1651.
[12]  Wittstadt, U., Füldner, G., Laurenz, E., Warlo, A., Große, A., Herrmann, R., Schnabel, L. and Mittelbach, W. (2017) A Novel Adsorption Module with Fiber Heat Exchangers: Performance Nalysis Based on Driving Temperature Differences. Renew Energy, 110, 154-161.
https://doi.org/10.1016/j.renene.2016.08.061
[13]  Ammann, J., Michel, B., Studart, A. and Ruch, P. (2019) Sorption Rate Enhancement in SAPO-34 Zeolite by Directed Mass Transfer Channels. International Journal of Heat and Mass Transfer, 130, 25-32.
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.065
[14]  Pahinkar, D.G., Boman, D.B. and Garimella, S. (2020) High Performance Microchannel Adsorption Heat Pumps. International Journal of Refrigeration, 19, 184-194.
[15]  Shi, Z., Liang, H., Yang, W., Liu, J., Liu, Z. and Qiao, Z. (2020) Machine Learning and in Silico Discovery of Metal-Organic Frameworks: Methanol as a Working Fluid in Adsorption-Driven Heat Pumps and Chillers. Chemical Engineering Science, 214, Article ID: 115430.
https://doi.org/10.1016/j.ces.2019.115430
[16]  Karmakar, A., Prabakaran, V., Zhaoa, D. and Chua, K.J. (2020) A Review of Metal-Organic Frameworks (MOFs) as Energy-Efficient Desiccants for Adsorption Driven Heat-Transformation Applications. Applied Energy, 269, Article ID: 115070.
https://doi.org/10.1016/j.apenergy.2020.115070
[17]  Al-Dadah, R., Mahmoud, S., Elsayed, E., Youssef, P. and Al-Mousawi, F. (2020) Metal-Organic Framework Materials for Adsorption Heat Pumps. Energy, 190, Article ID: 116356.
https://doi.org/10.1016/j.energy.2019.116356
[18]  Passos, E., Meunier, F. and Gianola, J.C. (1986) Thermodynamic Performance Improvement of an Intermittent Solar-Powered Refrigeration Cycle Using Adsorption of Methanol on Activated Carbon. Heat Recovery System, 6, 259-264.
https://doi.org/10.1016/0198-7593(86)90010-X
[19]  Critoph, R.E. (1988) Performance Limitations of Adsorption Cycles for Solar Cooling. Solar Energy, 41, 21-31.
[20]  Zheng, W., Worek, W. and Nowakowski, G. (1995) Effect of Design and Operating Parameters on the Performance of Two-Bed Sorption Heat Pump Systems. Journal of Energy Resources Technology, 117, 67-74.
https://doi.org/10.1115/1.2835323
[21]  Meunier, F. (1993) Thermal Swing Adsorption Refrigeration (Heat Pump). Separations Technology 3, 143-150.
[22]  Schicktanz, M., Hugenell, P. and Henninger, S.K. (2012) Evaluation of Methanol/Activated Carbon for Thermally Driven Chillers, Part II: The Energy Balance Model. International Journal of Refrigeration, 35, 554-561.
https://doi.org/10.1016/j.ijrefrig.2011.03.014
[23]  Sward, B.K., LeVan, M.D. and Meunier, F. (2000) Adsorption Heat Pump Modeling: The Thermal Wave Process with Local Equilibrium. Applied Thermal Engineering, 20, 759-780.
https://doi.org/10.1016/S1359-4311(99)00051-4
[24]  Tubreoumya, G.C., Dissa, A.O., Tiendrebeogo, E.S., Chesneau, X., Compaoré, A., Haro, K., Konseibo, C.D., Zeghmati, B. and Koulidiati, J. (2017) Contribution to the Modeling of a Solar Adsorption Refrigerator under the Climatic Conditions of Burkina Faso. Energy and Power Engineering, 9, 119-135.
https://doi.org/10.4236/epe.2017.92010
[25]  Chekirou, W., Chikouche, A., Boukheit, N., Karaali, A. and Phalippou, S. (2014) Dynamic Modelling and Simulation of the Tubular Adsorber of a Solid Adsorption Machine Powered by Solar Energy. International Journal of Refrigeration, 39, 137-151.
https://doi.org/10.1016/j.ijrefrig.2013.11.019
[26]  Bogie, I. and Charroy, J. (2015) Comoros Surface Exploration, Geophysics and Summation. Jacobs, Auckland.
[27]  Bachèlery, P. and Coudray, P. (1993) Carte volcano-tectonique de la Grande Comore (Njazidja) au 1/50000 avec notice explicative. Ed. Mission Française de cooperation aux Comores, Saint-Denis de La Réunion.
[28]  Savin, C., Ritz, M., Join, J.-L. and Bachelery, P. (2001) Hydrothermal System Mapped by CSAMT on Karthala Volcano, Grande Comore Island, Indian Ocean. Journal of Applied Geophysics, 48, 143-152.
https://doi.org/10.1016/S0926-9851(01)00078-7
[29]  Muchemi, G.G., Onacha, S.A. and Wambugu, J. (2008) Reconnaissance and Inception Report for Geothermal Resources Exploration Program of the Grande Comore. Internal KenGen Report for the Federal Government of Comoros, Unpublished.
[30]  McAdams, W.H. (1964) Transmission de la chaleur. Dunod, Paris.
[31]  Seghir-Ouali, S., Saury, D., Harmand, S., Phillipart, O. and Laloy, D. (2006) Convective Heat Transfer Inside a Rotating Cylinder with an Axial Air Flow. International Journal of Thermal Sciences, 45, 1166-1178.
https://doi.org/10.1016/j.ijthermalsci.2006.01.017
[32]  Churchill, S.W. and Chu, H.H.S. (1975) Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. International Journal of Heat and Mass Transfer, 18, 1323-1329.
https://doi.org/10.1016/0017-9310(75)90243-4
[33]  Duffie, J.A. and Beckman, W.A. (2013) Solar Engineering of Thermal Processes. 4th Edition, John Wiley & Sons, Hoboken.
[34]  Ushiki, I., Sato, Y., Ota, M. and Inomata, H. (2016) Adsorption Equilibria of Volatile Organic Compounds on Various Adsorbents in Supercritical Carbon Dioxide: Measurement and Analysis by the Dubinin-Astakhov Equation. Fluid Phase Equilibria, 450, 58-67.
https://doi.org/10.1016/j.fluid.2016.02.007
[35]  Saleh, M.M., Al-Dadah, R., Mahmoud, S., Elsayed, E. and El-Samni, O. (2020) Wire Fin Heat Exchanger Using Aluminium Fumarate for Adsorption Heat Pumps. Applied Thermal Engineering, 164, Article ID: 114426.
https://doi.org/10.1016/j.applthermaleng.2019.114426
[36]  Fadar, A.E., Mimet, A. and Pérez-Garcia, M. (2009) Modelling and Performance Study of a Continuous Adsorption Refrigeration System Driven by Parabolic Trough Solar Collector. Solar Energy, 83, 850-861.
https://doi.org/10.1016/j.solener.2008.12.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133