全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiscalar Geomorphometric Generalization for Soil-Landscape Modeling by Random Forest: A Case Study in the Eastern Amazon

DOI: 10.4236/jgis.2021.134024, PP. 434-451

Keywords: Digital Soil Mapping, Upscaling, Machine Learning, Random Forest Algorithm, Multiscale Geomorphometric Generalization

Full-Text   Cite this paper   Add to My Lib

Abstract:

Multiscalar topography influence on soil distribution has a complex pattern that is related to overlay of pedological processes which occurred at different times, and these driving forces are correlated with many geomorphologic scales. In this sense, the present study tested the hypothesis whether multiscale geomorphometric generalized covariables can improve pedometric modeling. To achieve this goal, this case study applied the Random Forest algorithm to a multiscale geomorphometric database to predict soil surface attributes. The study area is in phanerozoic sedimentary basins, in the Alter do Chão geological formation, Eastern Amazon, Brazil. The multiscale geomorphometric generalization was applied at general and specific geomorphometric covariables, producing groups for each scale combination. The modeling was run using Random Forest for A-horizon thickness, pH, silt and sand content. For model evaluation, visual analysis of digital maps, metrics of forest structures and effect of variables on prediction were used. For evaluation of soil textural classifications, the confusion matrix with a Kappa index, and the user’s and producer’s accuracies were employed. The geomorphometry generalization tends to smooth curvatures and produces identifiable geomorphic representations at sub-watershed and watershed levels. The forest structures and effect of variables on prediction are in agreement with pedological knowledge. The multiscale geomorphometric generalized covariables improved accuracy metrics of soil surface texture classification, with the Kappa Index going from 43% to 62%. Therefore, it can be argued that topography influences soil distribution at combined coarser spatial scales and is able to predict soil particle size contents in the studied watershed. Future development of the multiscale geomorphometric generalization framework could include generalization methods concerning preservation of features, landform classification adaptable at multiple scales.

References

[1]  Milne, G. (1935) Some Suggested Units of Classification and Mapping Particularly for East African Soils. Soil Research, 4, 183-198.
[2]  Hugget, R.J. (1975) Soil Landscape Systems: A Model of Soil Genesis. Geoderma, 13, 1-22.
https://doi.org/10.1016/0016-7061(75)90035-X
[3]  McBratney, A.B., Mendonca Santos, M.L. and Minasny, B. (2003) On Digital Soil Mapping. Geoderma, 117, 3-52.
https://doi.org/10.1016/S0016-7061(03)00223-4
[4]  Ma, Y., Minasny, B., Malone, B.P. and Mcbratney, A.B. (2019) Pedology and Digital Soil Mapping (DSM). European Journal of Soil Science, 70, 216-235.
https://doi.org/10.1111/ejss.12790
[5]  Wysocki, D.A. and Schoeneberger, P.J. (2011) Geomorphology of Soil Landscapes. In: Huang, P.M., Li, Y. and Sumner, M.E., Eds., Handbook of Soil Science: Properties and Processes, Chemical Rubber Company Press, Florida, 1-26.
[6]  Schmidt, J. and Andrew, R. (2005) Multi-Scale Landform Characterization. Area, 37, 341-350.
https://doi.org/10.1111/j.1475-4762.2005.00638.x
[7]  Targulian, V.O. and Krasilnikov, P.V. (2007) Soil System and Pedogenic Processes: Self-Organization, Time Scales, and Environmental Significance. Catena, 71, 373-381.
https://doi.org/10.1016/j.catena.2007.03.007
[8]  Kampf, N. and Curi, N. (2012) Formacao e evolucao do solo (pedogênese). In: Ker, J.C., Curi, N., Schaefer, C.E.G.R. and Vidal-Torrado, P., Eds., Pedologia: Fundamentos, SBCS (School of Business and Computer Science), Vicosa, 207-302.
[9]  Hu, G.R., Li, X.Y. and Yang, X.F. (2020) The Impact of Micro-Topography on the Interplay of Critical Zone Architecture and Hydrological Processes at the Hillslope Scale: Integrated Geophysical and Hydrological Experiments on the Qinghai-Tibet Plateau. Journal of Hydrology, 583, 12-46.
https://doi.org/10.1016/j.jhydrol.2020.124618
[10]  Florinsky, I.V. (2016) Influence of Topography on Soil Properties. In: Florinsky, I., Ed., Digital Terrain Analysis in Soil Science and Geology, 2nd Edition, Elsevier, London, 482.
[11]  Malone, B.P., McBratney, A.B. and Minasny, B. (2013) Spatial Scaling for Digital Soil Mapping. Soil Science Society of America Journal, 77, 890-902.
https://doi.org/10.2136/sssaj2012.0419
[12]  Pachepsky, Y. and Hill, R.L. (2017) Scale and Scaling in Soils. Geoderma, 287, 4-30.
https://doi.org/10.1016/j.geoderma.2016.08.017
[13]  Samuel-Rosa, A., Heuvelink, G.B.M., Vasques, G.M. and Anjos, L.H.C. (2015) Do More Detailed Environmental Covariates Deliver More Accurate Soil Maps? Geoderma, 243, 214-227.
https://doi.org/10.1016/j.geoderma.2014.12.017
[14]  Cavazzi, S., Corstanje, R., Mayr, T., Hannam, J. and Fealy, R. (2013) Are Fine Resolution Digital Elevation Models always the Best Choice in Digital Soil Mapping? Geoderma, 195-196, 111-121.
https://doi.org/10.1016/j.geoderma.2012.11.020
[15]  Wadoux, A.M.J.C. Minasny, B. and McBratney, A.B. (2020) Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth-Science Reviews, 210, Article ID: 103359.
https://doi.org/10.1016/j.earscirev.2020.103359
[16]  Hengl, T. (2006) Finding the Right Pixel Size. Computers & Geosciences, 32, 1283-1298.
https://doi.org/10.1016/j.cageo.2005.11.008
[17]  Smith, M.P., Zhu, A.X., Burt, J.E. and Stiles, C. (2006) The Effects of DEM Resolution and Neighborhood Size on Digital Soil Survey. Geoderma, 137, 58-69.
https://doi.org/10.1016/j.geoderma.2006.07.002
[18]  R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
http://www.r-project.org/
[19]  Grass, D.T. (2019) Geographic Resources Analysis Support System (GRASS) Software, Version 7.8. Open Source Geospatial Foundation, Beaverton.
[20]  QGIS (2019) QGIS Geographic Information System. Open Source Geospatial Foundation Project, Beaverton.
http://qgis.osgeo.org
[21]  Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., et al. (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8, 1991-2007.
https://doi.org/10.5194/gmd-8-1991-2015
[22]  Mendes, A.C., Truckenbrod, W. and Rodrigues, A.C.R.N. (2012) Análise faciológica da Formacao Alter do Chao (Cretáceo, Bacia do Amazonas), próximo à cidade de óbidos, Pará, Brasil. Revista Brasileira de Geociências, 42, 39-57.
[23]  IBGE (Brazilian Institute of Geography and Statistics) (2002) Mapa de Clima do Brasil. Diretoria de Geociências, Brazilian Institute of Geography and Statistics, Rio de Janeiro, 1.
[24]  IBGE (Brazilian Institute of Geography and Statistics) (2008) Estado do Pará: Mapa de Geomorfologia. Brazilian Institute of Geography and Statistics, Rio de Janeiro, 1.
[25]  Schaefer, C.E.G.R., et al. (2017) Solos da regiao amazonica. In: Curi, N., Ker, J.C., Novais, R.F., Vidal-Torrado, P. and Schaefer, C.E.G.R., Eds., Pedologia-Solos dos Biomas Brasileiros, School of Business and Computer Science, Trinidad, 75-111.
[26]  Geological Survey, U.S. (2019) Landsat 8 Surface Reflectance Code (LASRC) Product Guide. No. LSDS-1368 Version 2.0, Geological Survey, U.S., Reston, 40.
https://www.usgs.gov/media/files/landsat-8-surface-reflectance-code-lasrc-product-guide
[27]  Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., et al. (2007) The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, Article No. RG2004.
https://doi.org/10.1029/2005RG000183
[28]  Brochado, G.T. (2015) Atenuacao do efeito do desflorestamento em dados SRTM por meio de diferentes técnicas de interpolacao. Instituto Nacional de Pesquisas Espaciais, Sao José dos Campos.
[29]  Li, Z. and Openshaw, S. (1993) A Natural Principle for the Objective Generalization of Digital Maps. Cartography and Geographic Information Systems, 20, 19-29.
https://doi.org/10.1559/152304093782616779
[30]  Guilbert, E., Boguslawski, P. and Isikdag, U. (2019) Multidimensional and Multiscale GIS. ISPRS International Journal of Geo-Information, 8. Article No. 523.
https://doi.org/10.3390/ijgi8120523
[31]  IBGE (Brazilian Institute of Geography and Statistics) (2015) Manual Técnico de Pedologia, 3a. Brazilian Institute of Geography and Statistics, Rio de Janeiro.
[32]  Jasiewicz, J. and Stepinski, T.F. (2013) Geomorphons—A Pattern Recognition Approach to Classification and Mapping of Landforms. Geomorphology, 182, 147-156.
https://doi.org/10.1016/j.geomorph.2012.11.005
[33]  Zinck, J.A. (2016) The Geomorphic Landscape: Criteria for Classifying Geoforms. In: Zinck ,J.A., Metternicht, G., Bocco, G. and Del Valle, H.F., Eds., Geopedology, Springer International Publishing, Cham, 77-99.
https://doi.org/10.1007/978-3-319-19159-1_6
[34]  Minasny, B. and McBratney, A.B. (2006) A Conditioned Latin Hypercube Method for Sampling in the Presence of Ancillary Information. Computers & Geosciences, 32, 1378-1388.
https://doi.org/10.1016/j.cageo.2005.12.009
[35]  Biswas, A. and Zhang, Y (2018) Sampling Designs for Validating Digital Soil Maps: A Review. Pedosphere, 28, 1-15.
https://doi.org/10.1016/S1002-0160(18)60001-3
[36]  dos Santos, R.D., dos Santos, H.G., Ker, J.C., dos Anjos, L.H.C. and Shimizu, S.H. (2015) Manual de descricao e coleta de solo no campo, 7a edicao. Sociedade Brasileira de Ciência do Solo, Vicosa.
[37]  Brazilian Agricultural Research Corporation, National Soil Research Center (2017) Manual de Métodos de Análise de Solo, 3a Edicao. Brazilian Agricultural Research Corporation, National Soil Research Center, Rio de Janeiro.
[38]  Kettler, T.A., Doran, J.W. and Gilbert, T.L. (2001) Simplified Method for Soil Particle-Size Determination to Accompany Soil-Quality Analyses. Soil Science Society of America Journal, 65, 849-852.
https://doi.org/10.2136/sssaj2001.653849x
[39]  Abdi, H. and Williams, L.J. (2010) Principal Component Analysis. WIREs Computational Statistics, 2, 433-459.
https://doi.org/10.1002/wics.101
[40]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324
[41]  Lamichhane, S., Kumar, L. and Wilson, B. (2019) Digital Soil Mapping Algorithms and Covariates for Soil Organic Carbon Mapping and Their Implications: A Review. Geoderma, 352, 395-413.
https://doi.org/10.1016/j.geoderma.2019.05.031
[42]  Malone, B.P., Minasny, B. and McBratney, A.B. (2017) Use R for Digital Soil Mapping. Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-44327-0
[43]  Paluszynska, A., Biecek, P. and Jiang, Y. (2019) randomForestExplainer: Explaining and Visualizing. R Package.
[44]  Santos, H.G., Jacomine, P., dos Anjos, L.H.C., Oliveira, V. and Lumbreras, J.F. (2018) Sistema brasileiro de classificacao de Solos, 5a. Sociedade Brasileira de Ciência do Solo, Vicosa.
[45]  Liu, C., Frazier, P. and Kumar, L. (2007) Comparative Assessment of the Measures of Thematic Classification Accuracy. Remote Sensing of Environment, 107, 606-616.
https://doi.org/10.1016/j.rse.2006.10.010
[46]  Behrens, T., Schmidt, K., Mac-Millan, R.A. and Viscarra Rossel, R.A. (2018) Multiscale Contextual Spatial Modelling with the Gaussian Scale Space. Geoderma, 310, 128-137.
https://doi.org/10.1016/j.geoderma.2017.09.015
[47]  Lindsay, J.B., Francioni, A. and Cockburn, J.M.H. (2019) LiDAR DEM Smoothing and the Preservation of Drainage Features. Remote Sensing, 11, Article No. 1926.
https://doi.org/10.3390/rs11161926
[48]  Wu, Q., Chen, Y., Wilson, J.P., Liu, X. and Li, H. (2018) An Effective Parallelization Algorithm for DEM Generalization Based on CUDA. Environmental Modelling & Software, 114, 64-74.
https://doi.org/10.1016/j.envsoft.2019.01.002
[49]  Zhou, Q. and Chen, Y. (2011) Generalization of DEM for Terrain Analysis Using a Compound Method. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 38-45.
https://doi.org/10.1016/j.isprsjprs.2010.08.005
[50]  IBGE (Brazilian Institute of Geography and Statistics) (2009) Manual técnico de geomorfologia, 2a. Brazilian Institute of Geography and Statistics, Rio de Janeiro.
[51]  Flynn, T., Rozanov, A., Ellis, F., de Clercq, W. and Clarke, C. (2019) Farm-Scale Soil Patterns Derived from Automated Terrain Classification. Catena, 185, Article ID: 104311.
https://doi.org/10.1016/j.catena.2019.104311
[52]  De Reu, J., Bourgeois, J., Bats, M., Zwertvaegher, A., Gelorini, V., De Smedt, P., et al. (2013) Application of the Topographic Position Index to Heterogeneous Landscapes. Geomorphology, 186, 39-49.
https://doi.org/10.1016/j.geomorph.2012.12.015
[53]  Szypula, B. and Wieczorek, M. (2020) Geomorphometric Relief Classification with the K-Median Method in the Silesian Upland, Southern Poland. Frontiers of Earth Science, 14, 152-170.
https://doi.org/10.1007/s11707-019-0765-9
[54]  de Mello Cunha, G.O., de Almeida, J.A. and Barboza, B.B. (2014) Relacao entre o alumínio extraível com KCL e oxalato de amonio e a mineralogia da fracao argila, em solos ácidos Brasileiros. Revista Brasileira de Ciência do Solo, 38, 1387-1401.
https://doi.org/10.1590/S0100-06832014000500004
[55]  de Souza, C.M.P., Thomazini, A., Schaefer, C.E.G.R., Veloso, G.V., Moreira, G.M. and Fernandes Filho, E.I. (2018) Multivariate Analysis and Machine Learning in Properties of Ultisols (Argissolos) of Brazilian Amazon. Revista Brasileira de Ciência do Solo, 42, e0170419.
https://doi.org/10.1590/18069657rbcs20170419
[56]  Lucas, Y., Luizao, F.J., Chauvel, A., Rouiller, J. and Nahon, D. (1993) The Relation between Biological Activity of the Rain Forest and Mineral Composition of Soils. Science, 260, 521-523.
https://doi.org/10.1126/science.260.5107.521
[57]  Hartemink, A.E., Zhang, Y., Bockheim, J.G., Curi, N., Silva, S.H.G., Grauer-Gray, J., et al. (2020) Soil Horizon Variation: A Review. Advances in Agronomy, 160, 125-185.
https://doi.org/10.1016/bs.agron.2019.10.003
[58]  Behrens, T., Viscarra Rossel, R.A., Kerry, R., MacMillan, R., Schmidt, K., Lee, J., et al. (2019) The Relevant Range of Scales for Multi-Scale Contextual Spatial Modeling. Scientific Reports, 9, Article No. 14800.
https://doi.org/10.1038/s41598-019-51395-3
[59]  Novais, J., Roberto and Mello, F. (2007) Relacao Solo-Planta. In: Novais, R.F., de Barros, N.F., Fontes, R.L.F., Cantarutti, R.B. and Lima, J.C, Eds., Fertilidade do Solo, School of Business and Computer Science, Vicosa, 1-10.
[60]  Florinsky, I., Eilers, R., Manning, G. and Fuller, L. (2002) Prediction of Soil Properties by Digital Terrain Modelling. Environmental Modelling & Software, 17, 295-311.
https://doi.org/10.1016/S1364-8152(01)00067-6
[61]  Bhering, S.B., Chagas, C.S., de Carvalho Jr., W., Pereira, N.R., Filho, B.C. and Pinheiro, H.S.K. (2016) Mapeamento digital de areia, argila e carbono organico por modelos Random Forest sob diferentes resolucoes espaciais. Pesquisa Agropecuária Brasileira, 51, 1359-1370.
https://doi.org/10.1590/S0100-204X2016000900035
[62]  Shi, J., Yang, L., Zhu, A., Qin, C., Liang, P., Zeng, C., et al. (2018) Machine-Learning Variables at Different Scales vs. Knowledge-based Variables for Mapping Multiple Soil Properties. Soil Science Society of America Journal, 82, 645-656.
https://doi.org/10.2136/sssaj2017.11.0392

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133