全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Unified Stabilized Mixed Finite Element Method of the Stokes-Darcy Coupled Problem: Isotropic Discretization

DOI: 10.4236/jamp.2021.97112, PP. 1673-1706

Keywords: Coupled Stokes and Darcy Flows, Nonconforming Finite Element Method, Crouzeix-Raviart Element

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in RN, N ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method.

References

[1]  Discacciati, M. and Quarteroni, A. (2009) Navier-Stokes/Darcy Coupling: Modeling, Analysis, and Numerical Approximation. Revista Matemática Complutense, 22, 315-426.
https://doi.org/10.5209/rev_REMA.2009.v22.n2.16263
[2]  Beavers, G. and Joseph, D. (1967) Boundary Conditions at a Naturally Permeable Wall. Journal of Fluid Mechanics, 30, 197-207.
https://doi.org/10.1017/S0022112067001375
[3]  Saffman, P. (1971) On the Boundary Condition at the Interface of a Porous Medium. Studies in Applied Mathematics, 1, 93-101.
https://doi.org/10.1002/sapm197150293
[4]  Jäger, W. and Mikelić, A. (1996) On the Boundary Conditions of the Contact Interface between a Porous Medium and a Free Fluid. Annali della Scuola Normale Superiore. Classe di Scienze, 23, 403-465.
[5]  Jäger, W. and Mikelić, A. (2000) On the Interface Boundary Condition of Beavers, Joseph and Saffman. SIAM Journal on Applied Mathematics, 60, 1111-1127.
https://doi.org/10.1137/S003613999833678X
[6]  Jäger, W., Mikelić, A. and Neuss, N. (2001) Asymptotic Analysis of the Laminar Visous Flow over a Porous Bed. SIAM Journal on Scientific Computing, 22, 2006-2028.
https://doi.org/10.1137/S1064827599360339
[7]  Payne, L. and Straughan, B. (1998) Analysis of the Boundary Condition at the Interface between a Viscous Fluid and a Porous Medium and Related Modeling Questions. Journal de Mathématiques Pures et Appliquées, 77, 317-354.
https://doi.org/10.1016/S0021-7824(98)80102-5
[8]  Houédanou, K.W. and Ahounou, B. (2016) A Posteriori Error Estimation for the Stokes-Darcy Coupled Problem on Anisotropic Discretization. Mathematical Methods in the Applied Sciences, 40, 3741-3774.
https://doi.org/10.1002/mma.4261
[9]  Vassilev, D. and Yotov, I. (2009) Coupling Stokes-Darcy Flow with Transport. SIAM Journal on Scientific Computing, 5, 3661-3684.
https://doi.org/10.1137/080732146
[10]  Nicaise, S., Ahounou, B. and Houédanou, W. (2015) A Residual-Based Posteriori Error Estimates for a Nonconforming Finite Element Discretization of the Stokes-Darcy Coupled Problem: Isotropic Discretization. Afrika Matematika, 27, 701-729.
https://doi.org/10.1007/s13370-015-0370-3
[11]  William, L.J., Friedhelm, S. and Ivan, Y. (2002) Coupling Fluid Flow with Porous Media Flow. SIAM Journal on Numerical Analysis, 40, 2195-2218.
https://doi.org/10.1137/S0036142901392766
[12]  Mardal, K.-A., Tai, X. and Winther, R. (2002) A Robust Finite Element Method for Darcy-Stokes Flow. SIAM Journal on Numerical Analysis, 40, 1605-1631.
https://doi.org/10.1137/S0036142901383910
[13]  Mu, M. and Xu, J. (2007) A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow. SIAM Journal on Numerical Analysis, 45, 1801-1813.
https://doi.org/10.1137/050637820
[14]  Rui, H. and Zhang, R. (2009) A Unified Stabilized Mixed Finite Element Method for Coupling Stokes and Darcy Flows. Computer Methods in Applied Mechanics and Engineering, 198, 2692-2699.
https://doi.org/10.1016/j.cma.2009.03.011
[15]  Arbogast, T. and Brunson, D. (2007) A Computational Method for Approximating A Darcy-Stokes System Governing a Vuggy Porous Medium. Computational Geosciences, 11, 207-218.
https://doi.org/10.1007/s10596-007-9043-0
[16]  Galvis, J. and Sarkis, M. (2007) Nonconforming Mortar Discretization Analysis for the Coupling Stokes-Darcy Equations. Electronic Transactions on Numerical Analysis, 26, 350-384.
[17]  Gatica, G.-N., Oyarzùa, R. and Sayas, F.-J. (2011) Convergence of a Family of Galerkin Discretizations for the Stokes-Darcy Coupled Problem. Numerical Methods for Partial Differential Equations, 27, 721-748.
[18]  Rivière, B. and Yotov, I. (2005) Locally Conservative Coupling of Stokes and Darcy Flows. SIAM Journal on Numerical Analysis, 42, 1959-1977.
https://doi.org/10.1137/S0036142903427640
[19]  Chen, W. and Wang, Y. (2014) A Posteriori Error Estimate for H(div) Conforming Mixed Finite Element for the Coupled Darcy-Stokes System. Journal of Computational and Applied Mathematics, 255, 502-516.
https://doi.org/10.1016/j.cam.2013.05.021
[20]  Babuška, I. and Gatica, G. (2010) A Residual-Based a Posteriori Error Estimator for the Stokes-Darcy Coupled Problem. SIAM Journal on Numerical Analysis, 48, 498-523.
https://doi.org/10.1137/080727646
[21]  Gatica, G., Oyarzùa, R. and Sayas, F.-J. (2011) A Residual-Based a Posteriori Error Estimator for a Fully-Mixed Formulation of the Stokes-Darcy Coupled Problem. Computer Methods in Applied Mechanics and Engineering, 200, 1877-1891.
https://doi.org/10.1016/j.cma.2011.02.009
[22]  Armentano, M.G. and Stockdale, M.L. (2018) A Unified Mixed Finite Element Approximations of the Stokes-Darcy Coupled Problem. Computers and Mathematics with Applications, 77, 2568-2584.
https://doi.org/10.1016/j.camwa.2018.12.032
[23]  Yu, J., Mahbub, M.A.A., Shi, F. and Zheng, H. (2018) Stabilized Finite Element Method for the Stationary Mixed Stokes-Darcy Problem. Advances in Difference Equations, 2018, Article No. 346.
https://doi.org/10.1186/s13662-018-1809-2
[24]  Li, R., Li, J., Chen, Z. and Gao, Y. (2015) A Stabilized Finite Element Method Based on Two Local Gauss Integrations for a Coupled Stokes-Darcy Problem. Journal of Computational and Applied Mathematics, 292, 92-104.
https://doi.org/10.1016/j.cam.2015.06.014
[25]  Houédanou, K.W., Adetola, J. and Ahounou, B. (2017) Residual-Based a Posteriori Error Estimates for a Conforming Finite Element Discretization of the Navier-Stokes/Darcy Coupled Problem. Journal of Pure and Applied Mathematics: Advances and Applications, 18, 37-73.
https://doi.org/10.18642/jpamaa_7100121867
[26]  Gatica, G.N., Meddahi, S. and Oyarzùa, R. (2009) A Conforming Mixed Finite Element Method for the Coupling of Fluid Flow with Porous Media Flow. IMA Journal of Numerical Analysis, 29, 86-108.
https://doi.org/10.1093/imanum/drm049
[27]  Cui, M. and Yan, N. (2011) A Posteriori Error Estimate for the Stokes-Darcy System. Mathematical Methods in the Applied Sciences, 34, 1050-1064.
https://doi.org/10.1002/mma.1422
[28]  Girault, V. and Raviart, P.-A. (1986) Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics, Volume 5, Springer, Berlin.
https://doi.org/10.1007/978-3-642-61623-5
[29]  Ern, A. (2005) Aide-mémoire eléments finis. Dunod, Paris.
[30]  Brenner, S. (2003) Korn’s Inequalities for Piecewise H1 Vector Fields. Mathematics of Computation, 73, 1067-1087.
https://doi.org/10.1090/S0025-5718-03-01579-5
[31]  Brezzi, F. and Fortin, M. (1991) Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-3172-1
[32]  Crouzeix, M. and Raviart, P. (1973) Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations I. ESAIM: Mathematical Modelling and Numerical Analysis, 7, 33-75.
https://doi.org/10.1051/m2an/197307R300331
[33]  Hecht, F. (1998) The Mesh Adapting Software: BAMG. INRIA Report.
http://wwwrocq.inria.fr/gamma/cdrom/www/bamg/eng.htm
[34]  Frederic, H. and Olivier, P. (2012) Freefem++.
http://www.freefem.org
[35]  Houédanou, K.W. (2015) Analyse d’erreur a-posteriori pour quelques méthodes d’éléments finis mixtes pour le problème de transmission Stokes-Darcy: Discrétisations isotrope et anisotrope. Thèse de Doctorat, Université d’Abomey-Calavi, Godomey, 210 p.
http://hal.archives-ouvertes.fr/tel-01373344

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133