全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simple Mitigation Strategy for a Systematic Gate Error in IBMQ

DOI: 10.4236/jamp.2021.96083, PP. 1215-1229

Keywords: Quantum Computing, Error Mitigation, CHSH Inequalities

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we report the observation and characterisation of a systematic error in the implementation of U3 gates in the IBM quantum computers. By measuring the effect of this gate for various rotation angles the error appears as an over-rotation, whose magnitude does not correlate with IBM’s cited errors calculated using Clifford randomized benchmarking. We propose a simple mitigation procedure to limit the effects of this error. We show that using a simple mitigation strategy one can obtain improved results in the observed value for the CHSH inequality, measured in a cloud-based quantum computer. This work highlights the utility of simple mitigation strategies for short-depth quantum circuits.

References

[1]  Campagne-Ibarcq, P., Eickbusch, A., Touzard, S., Zalys-Geller, E., Frattini, N.E., Sivak, V.V., et al. (2020) Quantum Error Correction of a Qubit Encoded in Grid States of an Oscillator. Nature, 584, 368-372.
https://doi.org/10.1038/s41586-020-2603-3
[2]  Waldherr, G., Wang, Y., Zaiser, S., Jamali, M., Schulte-Herbrüggen, T., Abe, H., Ohshima, T., Isoya, J., Du, J.F., Neumann, P. and Wrachtrup, J. (2014) Quantum Error Correction in a Solid-State Hybrid Spin Register. Nature, 506, 204-207.
https://doi.org/10.1038/nature12919
[3]  Kelly, J., Barends, R., Fowler, A. G., Megrant, A., Jeffrey, E., White, T.C., et al. (2015) State Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit. Nature, 519, 66-69.
https://doi.org/10.1038/nature14270
[4]  Cramer, J., Kalb, N., Rol, M.A., Hensen, B., Blok, M.S., Markham, M., Twitchen, D.J., Hanson, R. and Taminiau, T.H. (2016) Repeated Quantum Error Correction on a Continuously Encoded Qubit by Real-Time Feedback. Nature Communications, 7, Article No. 11526.
https://doi.org/10.1038/ncomms11526
[5]  Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, Article No. 79.
https://doi.org/10.22331/q-2018-08-06-79
[6]  Cincio, L., Subaşı, Y., Sornborger, A.T. and Coles, P.J. (2018) Learning the Quantum Algorithm for State Overlap. New Journal of Physics, 20, Article ID: 113022.
https://doi.org/10.1088/1367-2630/aae94a
[7]  Murali, P., Baker, J.M., Javadi-Abhari, A., Chong, F.T. and Martonosi, M. (2019) Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. Proceedings of the 24th International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, April 2019, 1015-1029.
https://doi.org/10.1145/3297858.3304075
[8]  Cincio, L., Rudinger, K., Sarovar, M. and Coles, P.J. (2020) Machine Learning of Noise-Resilient Quantum Circuits. PRX Quantum, 2, Article ID: 010324.
https://doi.org/10.1103/PRXQuantum.2.010324
[9]  Temme, K., Bravyi, S. and Gambetta, J.M. (2017) Error Mitigation for Short-Depth Quantum Circuits. Physical Review Letters, 119, Article ID: 180509.
https://doi.org/10.1103/PhysRevLett.119.180509
[10]  Dumitrescu, E.F., McCaskey, A.J., Hagen, G., Jansen, G.R., Morris, T.D., Papenbrock, T., Pooser, R.C., Dean, D.J. and Lougovski, P. (2018) Cloud Quantum Computing of an Atomic Nucleus. Physical Review Letters, 120, Article ID: 210501.
https://doi.org/10.1103/PhysRevLett.120.210501
[11]  He, A., Nachman, B., de Jong, W.A. and Bauer, C.W. (2020) Zero-Noise Extrapolation for Quantum-Gate Error Mitigation with Identity Insertions. Physical Review A, 102, Article ID: 012426.
https://doi.org/10.1103/PhysRevA.102.012426
[12]  Strikis, A., Qin, D., Chen, Y., Benjamin, S.C. and Li, Y. (2020) Learning-Based Quantum Error Mitigation. arXiv: 2005.07601 [quant-ph].
[13]  Czarnik, P., Arrasmith, A., Coles, P.J. and Cincio, L. (2020) Error Mitigation with Clifford Quantum-Circuit Data. arXiv: 2005.10189 [quant-ph].
[14]  Kjaergaard, M., Schwartz, M.E., Braumüller, J., Krantz, P., Wang, J.I.-J., Gustavsson, S. and Oliver, W.D. (2020) Superconducting Qubits: Current State of Play. Annual Review of Condensed Matter Physics, 11, 369-395.
https://doi.org/10.1146/annurev-conmatphys-031119-050605
[15]  McKay, D.C., Wood, C.J., Sheldon, S., Chow, J.M. and Gambetta, J.M. (2017) Efficient Z Gates for Quantum Computing. Physical Review A, 96, Article ID: 022330.
https://doi.org/10.1103/PhysRevA.96.022330
[16]  Abraham, H., Akhalwaya, I.Y., Aleksandrowicz, G., Alexander, T., Alexandrowics, G., Arbel, E., Asfaw, A., et al. (2019) Qiskit: An Open-source Framework for Quantum Computing (Version 0.7.2). Zenodo.
http://doi.org/10.5281/zenodo.2562111
[17]  Maciejewski, F.B., Zimboras, Z. and Oszmaniec, M. (2020) Mitigation of Readout Noise in Near-Term Quantum Devices by Classical Post-Processing Based on Detector Tomography. Quantum, 4, 257.
https://doi.org/10.22331/q-2020-04-24-257
[18]  Team, I.Q. (2019) Qiskit Tutorials: Measurement Error Mitigation.
[19]  Bravyi, S., Sheldon, S., Kandala, A., Mckay, D.C. and Gambetta, J.M. (2020) Mitigating Measurement Errors in Multiqubit Experiments. Physical Review A, 103, Article ID: 042605.
https://doi.org/10.1103/PhysRevA.103.042605
[20]  Chen, Y., Farahzad, M., Yoo, S. and Wei, T.-C. (2019) Detector Tomography on IBM Quantum Computers and Mitigation of an Imperfect Measurement. Physical Review A, 100, Article ID: 052315.
https://doi.org/10.1103/PhysRevA.100.052315
[21]  Rigetti Computing.
https://rigetti.com/
[22]  (2020) Alice and Bob.
https://gitlab.ift.uam-csic.es/danielbultrini/AB
[23]  Clauser, J.F., Horne, M.A., Shimony, A. and Holt, R.A. (1969) Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters, 23, Article No. 880.
https://doi.org/10.1103/PhysRevLett.23.880
[24]  Cirel’son, B.S. (1980) Quantum Generalizations of Bell’s Inequality. Letters in Mathematical Physics, 4, 93-100.
https://doi.org/10.1007/BF00417500

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133