全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microbial Properties of a Ferric Lixisol as Affected by Long Term Crop Management and Fertilization Regimes in Burkina Faso, West Africa

DOI: 10.4236/ojss.2021.114014, PP. 256-270

Keywords: Microbial Respiration, Bacteria Quantification, Compost, Crop Rotation, Sorghum, Cowpea

Full-Text   Cite this paper   Add to My Lib

Abstract:

We used an ongoing long-term field trial established since 1960 in Burkina Faso, to study the microbial properties of a Ferric Lixisol under various crop management and fertilization regimes. Microbial respiration rate, microbial biomass carbon (MBC) and soil bacteria’s number were assessed in soil samples taken at 0 - 20 cm depth. The crop management were continuous cropping of sorghum (Sorghum bicolor L.) (S/S) and rotation between sorghum and cowpea (Vigna unguiculata L.) (S/C), while the fertilization regimes were: 1) Control (te); 2) Low rate of mineral fertilizer (fm); 3) Low rate of mineral fertilizer + sorghum straw restitution (fmr); 4) Low rate of mineral fertilizer + low rate of manure (fmo); 5) High rate of mineral fertilizer (FM); and vii) High rate of mineral fertilizer + high rate of manure (FMO). The manure is applied every second year. The results indicate that sorghum/cowpea rotation significantly increase MBC and bacteria number as compared to continuous sorghum cropping. MBC ranged from 335.5 to 54.85 μg C g1 soil with S/S and from 457.5 to 86.6 μg C g1 soil with S/C. Application of high level of manure and mineral fertilizer increase microbial respiration rate and MBC. The highest MBC was observed with FMO and the lowest with the control. In general, the metabolic quotient (qCO2) was negatively impacted by the fertilization and cowpea rotation. For S/S rotation, qCO2 of the control was 1.5 to 2 times that of the treatments with low mineral fertilizer (fmr, fmo and fm) and 3 times that of the high rate of fertilization (FM and FMO). With S/C rotation, qCO2 of the control was 2 times of that fmr, FM and FMO and 0.8 times that of fmo and fm. Soil bacteria in the fmr were 63.6 and 12.4 times the control in the S/S and S/C rotations, respectively. In sum, combined application of manure and mineral fertilizer with crop rotation is the best management practices to improve in sustainable way microbial activities in tropical soil.

References

[1]  Traore, M., Lompo, F., Thio, B., Ouattara, B., Ouattara, K. and Sedogo, P.M. (2012) Influence de la rotation culturale avec apport de matières organiques exogènes et d’une fertilisation minérale sur les nématodes phytoparasites en culture du sorgho au Centre Ouest du Burkina Faso. International Journal of Biological and Chemical Sciences, 6, 628-640.
https://doi.org/10.4314/ijbcs.v6i2.7
[2]  Ouandaogo, N., Ouattara, B., Pouya, M.B., Gnankambary, Z., Nacro, H.B. and Sedogo, P.M. (2016) Effets des fumures organo-minérales et des rotations culturales sur la qualité des sols. International Journal of Biological and Chemical Sciences, 10, 904-918.
https://doi.org/10.4314/ijbcs.v10i2.37
[3]  Franke, A.C., Van den Brand, G.J., Vanlauwe, B. and Giller, K.E. (2018) Sustainable Intensification through Rotations with Grain Legumes in Sub-Saharan Africa: A Review. Agriculture, Ecosystems and Environment, 261, 172-185.
https://doi.org/10.1016/j.agee.2017.09.029
[4]  Venter, Z.S., Jacobs, K. and Hawkins, H.-J. (2016) The Impact of Crop Rotation on Soil Microbial Diversity: A Meta-Analysis. Pedobiologia, 59, 215-223.
https://doi.org/10.1016/j.pedobi.2016.04.001
[5]  Sanchez, P.A., Shepherd, K.D., Soule, M.J., Place, F.M, Buresh, R.J., Izac, A.M.N., Mokwunye, A.U., Kwesiga, F.R., Ndiritu, C.G. and Woomer, P.L. (1997) Soil Fertility Replenishment in Africa: An Investment in Natural Resource Capital. In: Buresh, R., Sanchez, P.A. and Calhoun, F., Eds., Replenishing Soil Fertility in Africa, Vol. 51, Soil Science Society of America, American Society of Agronomy, Madison, 1-46.
https://doi.org/10.2136/sssaspecpub51.c1
[6]  Gnankambary, Z., Stedt, U., Nyberg, G., Hien, V. and Malmer, A. (2008) Nitrogen and Phosphorus Limitation of Soil Microbial Respiration in Two Tropical Agroforestry Parklands in the South-Sudanese Zone of Burkina Faso: The Effects of Tree Canopy and Fertilization. Soil Biology and Biochemistry, 40, 350-359.
https://doi.org/10.1016/j.soilbio.2007.08.015
[7]  Geisseler, D. and Scow, K.M. (2014) Long-Term Effects of Mineral Fertilizers on Soil Microorganisms—A Review. Soil Biology and Biochemistry, 75, 54-63.
https://doi.org/10.1016/j.soilbio.2014.03.023
[8]  Traoré, O.Y.A., Kiba, D. I., Arnold, M.C., Fliessbach, A., Oberholzer, H. R., Nacro, H.B., Lompo, F., Oberson, A., Frossard E. and Bunemann, E.K. (2016) Fertilization Practices Alter Microbial Nutrient Limitations after Alleviation of Carbon Limitation in a Ferric Acrisol. Biology and Fertility of Soils, 52, 177-189.
https://doi.org/10.1007/s00374-015-1061-9
[9]  Choudharya, M., Meenaa, V.S., Pandaya, S.C., Mondala, T., Yadava, R.P., Mishraa, P.K., Bishta, J.K. and Pattanayaka, A. (2021) Long-Term Effects of Organic Manure and Inorganic Fertilization on Biological Soil Quality Indicators of Soybean-Wheat Rotation in the Indian Mid-Himalaya. Applied Soil Ecology, 157, Article ID: 103754.
https://doi.org/10.1016/j.apsoil.2020.103754
[10]  Coleman, D.C., Anderson, R.V., Cole, C.V., Elliott, E.T., Woods L. and Campion, M.K. (1978) Trophic Interactions in Soils as They Affect Energy and Nutrient Dynamics. IV: Flows of Metabolic and Biomass Carbon. Microbial Ecology, 4, 373-380.
https://doi.org/10.1007/BF02013280
[11]  Dommergues, Y. (1960) La notion de coefficient de minéralisation du carbone dans les sols. Agronomie Tropicale, 15, 54-60.
[12]  Jenkinson, D.S. and Powlson, D.S. (1976) The Effects of Biocidal Treatments on Metabolism in Soil. I. Fumigation with Chloroform. Soil Biology and Biochemistry, 8, 167-177.
https://doi.org/10.1016/0038-0717(76)90001-8
[13]  Anderson, J.P.E. and Domsch, K.H. (1978) A Physiological Method for the Quantitative Measurement of Microbial Biomass in Soils. Soil Biology and Biochemistry, 10, 215-221.
https://doi.org/10.1016/0038-0717(78)90099-8
[14]  Vanlauwe, B. and Giller, K.E. (2006) Popular Myths around Soil Fertility Management in Sub-Saharan Africa. Agriculture, Ecosystems and Environment, 116, 34-46.
https://doi.org/10.1016/j.agee.2006.03.016
[15]  Gregorich, E.G., Carter, M.R., Angers, D.A., Monreal, C.M. and Ellert, B.H. (1994) Towards a Minimum Data Set to Assess Soil Organic Matter Quality in Agricultural Soils. Canadian Journal of Soil Science, 74, 367-385.
https://doi.org/10.4141/cjss94-051
[16]  Gnankambary, Z. (2007) Compost and Fertilizer Mineralization Effects on Soil and Harvest in Parkland Agroforestry Systems in the South-Sudanese Zone of Burkina Faso. PhD Thesis, Swedish University of Agricultural Sciences, Umeå, 129.
[17]  Soma, D.M., Kiba, D.I, Gnankambary, Z., Ewusi-Mensah, N., Sanou, M., Nacro, H.B., Lompo, F., Sedogo, P.M. and Abaidoo, R.C. (2017) Effectiveness of Combined Application of Kodjari Phosphate Rock, Water Soluble Phosphorus Fertilizer and Manure in a Ferric Lixisol in the Centre West of Burkina Faso. Archives of Agronomy and Soil Science, 64. 384-397.
https://doi.org/10.1080/03650340.2017.1353216
[18]  Bationo, A. Waswa, B., Kihara, J., Adolwa, I., Vanlauwe, B. and Koala, S. (2012) Lessons Learned from Long-Term Soil Fertility Management Experiments in Africa. Springer, Dordrecht.
https://doi.org/10.1007/978-94-007-2938-4
[19]  Ma, Q., Wen, Y., Wang, D., Sun, X., Hill, P.M., Macdonald, A., Chadwick, D.R., Wu, L. and Jones, D.L. (2020) Farmyard Manure Applications Stimulate Soil Carbon and Nitrogen Cycling by Boosting Microbial Biomass Rather than Changing Its Community Composition. Soil Biology and Biochemistry, 144, Article ID: 107760.
https://doi.org/10.1016/j.soilbio.2020.107760
[20]  Min, D.H., Islam, K.R., Vough, L.R. and Weil, R.R. (2003) Dairy Manure Effects on Soil Quality Properties and Carbon Sequestration in Alfalfa-Orchard Grass Systems. Communications in Soil Science and Plant Analysis, 34, 781-799.
https://doi.org/10.1081/CSS-120018975
[21]  Heinze, S., Raupp, J. and Joergensen, R.G. (2010) Effects of Fertilizer and Spatial Heterogeneity in Soil pH on Microbial Biomass Indices in a Long-Term Field Trial of Organic Agriculture. Plant and Soil, 328, 203-215.
https://doi.org/10.1007/s11104-009-0102-2
[22]  Liu, E., Yan, C., Mei, X., He, W., Bing, S.H., Ding, L., Liu, Q., Liu, S. and Fan, T. (2010) Long-Term Effect of Chemical Fertilizer, Straw, and Manure on Soil Chemical and Biological Properties in Northwest China. Geoderma, 158, 173-180.
https://doi.org/10.1016/j.geoderma.2010.04.029
[23]  Diallo-Diagne, N.H, Assigbetse, K. S. Sall, Masse, D. Bonzi, M. Ndoye I. and Chotte, J.L. (2016) Response of Soil Microbial Properties to Long-Term Application of Organic and Inorganic Amendments in a Tropical Soil (Saria, Burkina Faso). Open Journal of Soil Science, 6, 21-33.
https://doi.org/10.4236/ojss.2016.62003
[24]  Chen, D., Yuan, L., Liu, Y., Ji, J. and Hou, H. (2017) Long-Term Application of Manures Plus Chemical Fertilizers Sustained High Rice Yield and Improved Soil Chemical and Bacterial Properties. European Journal of Agronomy, 90, 34-42.
https://doi.org/10.1016/j.eja.2017.07.007
[25]  Soma, D.M. Kiba, D.I., Ewusi-Mensah, N., Gnankambary, Z., Lompo, F., Sedogo M.P. and Abaidoo, R.C. (2018) Changes in Sorghum Production, Soil P Forms and P Use Efficiency Following Long-Term Application of Manure, Compost and Straw in a Ferric Lixisol. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68, 401-411.
https://doi.org/10.1080/09064710.2017.1414871
[26]  Černy, J., Balík, J., Kulhánek, M. and Nedvěd, V. (2008) The Changes in Microbial Biomass C and N in Long-Term Field Experiments. Plant, Soil and Environment, 54, 212-218.
https://doi.org/10.17221/393-PSE
[27]  Pallo, F.J.P, Sawadogo, N., Sawadogo, L., Sedogo, M.P. and Assa, A. (2008) Statut de la matière organique des sols dans la zone sud-soudanienne au Burkina Faso. Biotechnologie, Agronomie, Société et Environnement, 12, 291-301.
[28]  Li, C.-X., Ma, S.-C., Shao, Y., Ma, S.-T. and Zhang, L.-I. (2018) Effects of Long-Term Organic Fertilization on Soil Microbiologic Characteristics, Yield and Sustainable Production of Winter Wheat. Journal of Integrative Agriculture, 17, 210-219.
https://doi.org/10.1016/S2095-3119(17)61740-4
[29]  Jones, D.L., Hill, P.W., Smith, A.R., Farrell, M., Ge, T., Banning, N.C. and Murphy, D.V. (2018) Role of Substrate Supply on Microbial Carbon Use Efficiency and Its Role in Interpreting Soil Microbial Community-Level Physiological Profiles (CLPP). Soil Biology and Biochemistry, 123, 1-6.
https://doi.org/10.1016/j.soilbio.2018.04.014
[30]  Zheng, Q., Hu, Y., Zhang, S., Noll, L., Beockle, T., Richter, A. and Wanek, W. (2019) Growth Explains Microbial Carbon Use Efficiency across Soils Differing in Land Use and Geology. Soil Biology and Biochemistry, 128, 45-55.
https://doi.org/10.1016/j.soilbio.2018.10.006
[31]  Liu, Y.-R., Delgado-Baquerizo, M., Wang, J.-T., Hu, H.-W., Yang, Z. and He, J.-Z. (2018) New Insights into the Role of Microbial Community Composition in Driving Soil Respiration Rates. Soil Biology and Biochemistry, 118, 35-41.
https://doi.org/10.1016/j.soilbio.2017.12.003
[32]  Ge, G., Li, Z., Fan, F., Chu, G., Hou, Z. and Liang, Y. (2010) Soil Biological Activity and Their Seasonal Variations in Response to Long-Term Application of Organic and Inorganic Fertilizers. Plant and Soil, 326, Article No. 31.
https://doi.org/10.1007/s11104-009-0186-8
[33]  Francioli, D., Schulz, E., Lentendu, G., Wubet, T., Buscot, F. and Reitz, T. (2016) Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Frontiers in Microbiology, 7, Article No. 1446.
https://doi.org/10.3389/fmicb.2016.01446
[34]  Yusuf, A.A., Iwuafor, E.N.O., Abaidoo, R.C., Olufajo, O.O. and Sanginga, N. (2009) Grain Legume Rotation Benefit to Maize in the Northern Guinea Savanna of Nigeria: Fixed Nitrogen versus Other Rotation Effects. Nutrient Cycling in Agroecosystems, 84, 129-139.
https://doi.org/10.1007/s10705-008-9232-9
[35]  Ouda, S., Zohry, A. and Noreldin, T. (2018) Crop Rotation Maintains Soil Sustainability. In: Ouda, S., Zohry, A.E.H. and Noreldin, T., Eds., Crop Rotation: An Approach to Secure Future Food, Springer, Cham, 55-76.
https://doi.org/10.1007/978-3-030-05351-2_4
[36]  Borase, D.N., Nath, C.P., Hazra, K.K., Senthilkumar, M., Singh, S.S., Praharaj, C.S., Singha, U. and Kumar, N. (2020) Long-Term Impact of Diversified Crop Rotations and Nutrient Management Practices on Soil Microbial Functions and Soil Enzymes Activity. Ecological Indicators, 114, Article ID: 106322.
https://doi.org/10.1016/j.ecolind.2020.106322
[37]  McDaniel, M.D. and Grandy, A.S (2016) Soil Microbial Biomass and Function Are Altered by 12 Years of Crop Rotation. SOIL, 2, 583-599.
https://doi.org/10.5194/soil-2-583-2016
[38]  Balota, E.L., Colozzi-Filho, A., Andrade, D.S. and Dick, R.P. (2003) Microbial Biomass in Soils under Different Tillage and Crop Rotation Systems. Biology and Fertility of Soil, 38, 15-20.
https://doi.org/10.1007/s00374-003-0590-9
[39]  Sylvia, D.M., Fuhrmann, J.J., Hartel, P.G. and Zuberer, D.A. (2005) Principles and Applications of Soil Microbiology. 2nd Edition, Pearson Prentice Hall Inc., Upper Saddle River, 640 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133