全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dy(Co0.5Ni0.5)2合金磁熵变的研究
Magnetic Entropy Change of Dy(Co0.5Ni0.5)2

DOI: 10.12677/APP.2021.113019, PP. 166-171

Keywords: Laves相合金,磁熵变,磁卡效应
Laves Phase
, Magnetic Entropy Change, Magnetocaloric Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

我们采用电弧熔炼和真空热处理的方法制备了Dy(Co0.5Ni0.5)2合金,通过该合金的等温磁化曲线,对其相变类型和磁卡效应展开研究。根据Arrott曲线和Inoue-Shimizu模型确定Dy(Co0.5Ni0.5)2合金的相变属于二级相变。根据等温磁化曲线的数据计算了Dy(Co0.5Ni0.5)2合金的熵变,计算结果表明随着磁场的增加熵变值不断增加,且在外加磁场相同时,熵变值在居里温度附近达到最大值。在30 kOe的磁场中,Dy(Co0.5Ni0.5)2磁熵变和制冷系数分别为6.86 J/kg?K和235.78 J/kg。通过与其它文献所报道的Laves相合金相对比,可以知道Dy(Co0.5Ni0.5)2的制冷系数要优于大多数Laves相合金。
Dy(Co0.5Ni0.5)2 alloy was synthesized by arc melting and subsequent annealing. We have studied magnetocaloric effect (MCE) and transition order by isothermal magnetization curves. According to Arrott curve and Inoue-Shimizu model, the phase transition of Dy(Co0.5Ni0.5)2 alloy belongs to the second-order phase transition. The entropy change of Dy(Co0.5Ni0.5)2 alloy is calculated based on the data of isothermal magnetization curves. The results show that the entropy change increases with the increase of magnetic field. In the case of the same external magnetic field, the entropy change of Dy(Co0.5Ni0.5)2 reaches the maximum near Curie temperature. The maximum magnetic entropy change and the refrigerant capacity of Dy(Co0.5Ni0.5)2 alloy are 6.86 J/kg?K and 235.78 J/kg in a magnetic field of 30 kOe. By comparing with Laves compounds reported in other literatures, it can be seen that the refrigerant capacity of Dy(Co0.5Ni0.5)2 is better than that of other compounds.

References

[1]  Pecharsky, V.K. and Gschneidner, Jr.K.A. (1997) Giant Magnetocaloric Effect in Gd5(Si2Ge2). Physical Review Letters, 78, 4494-4997.
https://doi.org/10.1103/PhysRevLett.78.4494
[2]  Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y. and Hiraga, K. (1984) Permanent Magnet Materials Based on the Rare Earth-Iron-Boron Tetragonal Com-pounds. IEEE Transactions on Magnetics, 20, 1584-1589.
https://doi.org/10.1109/TMAG.1984.1063214
[3]  Buschow, K.H.J., Naastepad, P.A. and Westendorp, F.F. (1969) Preparation of SmCo5 Permanent Magnets. Journal of Applied Physics, 40, 4029-4032.
https://doi.org/10.1063/1.1657138
[4]  Clark, A.E. and Belson, H.S. (1971) Giant Room-Temperature Magnetostrictions in TbFe2 and DyFe2. Physical Review B, 5, 3642-3644.
https://doi.org/10.1103/PhysRevB.5.3642
[5]  Gutfliesch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G. and Liu, J.P. (2011) Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Advance Materials, 23, 821-842.
https://doi.org/10.1002/adma.201002180
[6]  Pecharskya, V.K., Gschneidner, Jr.K.A., Mudryka, Y. and Paudyal, D. (2009) Making the Most of the Magnetic and Lattice Entropy Changes. Journal of Magnetism and Magnetic Materi-als, 321, 3541-3547.
https://doi.org/10.1016/j.jmmm.2008.03.013
[7]  Mudryk, Y., Paudyal, D., Pathak, A.K., Pecharsky, V.K. and Gschneidner, Jr.K.A. (2016) Balancing Structural Distortions via Competing 4f and Itinerant Interactions: A Case of Polymorphism in Magnetocaloric HoCo2. Journal of Materials Chemistry C, 4, 4521-4531.
https://doi.org/10.1039/C6TC00867D
[8]  Khmelevskyi, S. and Mohn, P. (2000) The Order of the Magnetic Phase Transitions in RCo2 (R = Rare Earth) Intermetallic Compounds. Journal of Physics: Condensed Matter, 12, 9453-9464.
https://doi.org/10.1088/0953-8984/12/45/308
[9]  Yamada, H., Inoue, J., Terao, K., Kanda, S. and Shimizu, M. (1984) Electronic Structure and Magnetic Properties of YM2 Compounds (M = Mn, Fe, Co and Ni). Journal of Physics F: Metal Physics, 14, 1943-1960.
https://doi.org/10.1088/0305-4608/14/8/023
[10]  Bloch, D., Edwards, D.M., Shimizu, M. and Voiron, J. (1975) First Order Transitions in ACo2 Compounds. Journal of Physics F: Metal Physics, 5, 1217-1926.
https://doi.org/10.1088/0305-4608/5/6/022
[11]  刘懿德, 时阳光. 亚铁磁Er(Co1?xFex)2的宽温域磁热效应[J]. 应用物理, 2019, 9(12): 511-517.
[12]  Zheng T.F., Shi Y.G., Hu C.C., Fan, J.Y., Shi, D.N., Tang, S.L. and Du, Y.W. (2012) Magnetocaloric Effect and Transition Order of Mn5Ge3 Ribbons. Journal of Magnetism and Magnetic Materials, 324, 4102-4105.
https://doi.org/10.1016/j.jmmm.2012.07.031
[13]  Wood, M.E. and Potter, W.H. (1985) General Analysis of Mag-netic Refrigeration and Its Optimization Using a New Concept: Maximization of Refrigerant Capacity. Cryogenics, 25, 667-683.
https://doi.org/10.1016/0011-2275(85)90187-0
[14]  Inoue, J. and Shimizu, M. (1988) First- and Second-Order Magnetic Phase Transitions in (RY)Co2 and R(Co-Al)2 (R = Heavy Rare-Earth Element) Compounds. Journal of Physics F: Metal Physics, 18, 2487.
https://doi.org/10.1088/0305-4608/18/11/020
[15]  Brommer, P.E. (1989) A Generalization of the Inoue-Shimizu Model. Physica B: Condensed Matter, 154, 197-202.
https://doi.org/10.1016/0921-4526(89)90068-9
[16]  Inoue, J. and Shimizu, M. (1982) Volume Dependence of the First-Order Transition Temperature for RCo2 Compounds. Metal Physics, 12, 1811.
https://doi.org/10.1088/0305-4608/12/8/021
[17]  Gschneidner, K.A. and Pecharsky, V.K. (2000) Magnetocaloric Materials. Annual Review of Materials Science, 30, 387.
https://doi.org/10.1146/annurev.matsci.30.1.387
[18]  Halder, M., Yusuf, S.M., Mukadam, M.D. and Shashikala, K. (2010) Magnetocaloric Effect and Critical Behavior near the Paramagnetic to Ferrimagnetic Phase Transition Temperature in TbCo2?xFex. Physical Review B, 81, Article ID: 174402.
https://doi.org/10.1103/PhysRevB.81.174402
[19]  Han, Z.D., Hua, Z.H., Wang, D., Zhang, C., Gu, B. and Du, Y. (2006) Magnetic Properties and Magnetocaloric Effect in Dy(Co1?xFex)2 Alloys. Journal of Magnetism and Magnetic Materials, 302, 109-112.
https://doi.org/10.1016/j.jmmm.2005.08.013
[20]  Zheng, W.G., Cui, Y., Chen, F.H., Shi, Y.G. and Shi, D.N. (2018) Magnetocaloric Effect in Nd(Co0.8Fe0.2)2 Laves Compound with Wide Operating Temperature. Journal of Magnetism and Magnetic Materials, 460, 137-140.
https://doi.org/10.1016/j.jmmm.2018.03.059

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133