|
Material Sciences 2021
多级结构硅基负极材料的制备及电化学性能
|
Abstract:
高比容量、最高体积容量、高储量使硅基材料倍受关注。硅低导电性以及在充放电过程中体积效应大、固态电解质界面(SEI)膜不稳定等问题,导致循环性能较差,制约硅基负极材料的高性能应用。本文通过三层同轴静电纺丝技术将ZIF-67、聚甲基丙烯酸甲酯(PMMA)、聚丙烯腈(PAN)、Si制备出多级结构的纳米纤维,以解决硅基负极材料的缺陷问题。由于ZIF-67和PMMA的加入,提高了复合材料的石墨化程度(ID/IG值降至0.96),导电性得以提高。同时也提高了离子扩散速率和电荷转移效率。经过优化,[Si/C]@[ZIF-67/C]负极材料在0.2 A?g?1的电流密度下,初始放电比容量达到1303.7 mAh?g?1,且在100次循环后仍具有882.8 mAh?g?1的可逆容量,比容量保留率达到64%。
The high specific capacity, the highest volume capacity, and the rich content of the earth, have made silicon-based materials attract more attention. However, low conductivity of silicon itself, the large volume effect during charging and discharging, and the instability of the SEI film result in poor cycle performance and restrict the high-performance application of silicon-based anode materials. In this paper, ZIF-67, Polymethyl Methacrylate (PMMA), Polyacrylonitrile (PAN), and Si were used to prepare multi-level nanofibers through three-layer coaxial electrospinning technology to solve the defects of silicon-based anode materials. Due to the addition of ZIF-67 and PMMA, the graphitization degree of the composite material is increased (the value of ID/IG decreases to 0.96), and the conductivity is improved. At the same time, the ion diffusion rate and charge transfer efficiency are improved. The initial discharge specific capacity reaches 1303.7 mAh?g?1 at the current density of 0.2 A?g?1. There is still a reversible capacity of 882.8 mAh?g?1 after 100 cycles, and the specific capacity retention rate is 64%.
[1] | Tarascon, J.-M. and Armand, M. (2010) Issues and Challenges Facing Rechargeable Lithium Batteries. In: Dusastre, V., Ed., Materials for Sustainable Energy, World Scientific Publishing, Singapore, 171-179.
https://doi.org/10.1142/9789814317665_0024 |
[2] | Etacheri, V., Marom, R., Elazari, R., et al. (2011) Challenges in the Development of Advanced Li-Ion Batteries: A Review. Energy & Environmental Science, 4, 3243-3262. https://doi.org/10.1039/c1ee01598b |
[3] | Hwang, T.H., Lee, Y.M., Kong, B.-S., et al. (2012) Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle- Based Lithium Ion Battery Anodes. Nano Letters, 12, 802-807. https://doi.org/10.1021/nl203817r |
[4] | 高鹏飞, 杨军. 锂离子电池硅复合负极材料研究进展[J]. 化学进展, 2011, 23(2): 263-274. |
[5] | 牛津, 张苏, 牛越, 等. 硅基锂离子电池负极材料[J]. 化学进展, 2015, 27(9): 1275-1281. |
[6] | Wu, H. and Cui, Y. (2012) Designing Nanostructured Si Anodes for High Energy Lithium Ion Bat-teries. NanoToday, 7, 414-429. https://doi.org/10.1016/j.nantod.2012.08.004 |
[7] | Chen, X., Li, X., Ding, F., et al. (2012) Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes. Nano Letters, 12, 4124-4130. https://doi.org/10.1021/nl301657y |
[8] | Cho, J. (2010) Porous Si Anode Materials for Lithium Re-chargeable Batteries. Journal of Materials Chemistry, 20, 4009-4014. https://doi.org/10.1039/b923002e |
[9] | Li, Z., Zhang, J.T., Chen, Y.M., et al. (2015) Pie-Like Electrode Design for High-Energy Density Lithium-Sulfur Batteries. Nature Communications, 6, Article No. 8850. https://doi.org/10.1038/ncomms9850 |
[10] | Chen, Y.M., Yu, L. and Lou, X.W. (2016) Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage. Angewandte Chemie International Edition, 55, 5990-5993.
https://doi.org/10.1002/anie.201600133 |
[11] | Peng, S., Li, L., Hu, Y., et al. (2015) Fabrication of Spinel One-Dimensional Architectures by Single-Spinneret Electrospinning for Energy Storage Applications. ACS Nano, 9, 1945-1954. https://doi.org/10.1021/nn506851x |
[12] | Wu, Z.-Y., Xu, X.-X., Hu, B.-C., et al. (2015) Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Carbon Nanofibers for Efficient Electrocatalysis. Angewandte Chemie, 127, 8297-8301.
https://doi.org/10.1002/ange.201502173 |
[13] | Liu, Y., Ma, J., Lu, T., et al. (2016) Electrospun Carbon Nanofibers Reinforced 3D Porous Carbon Polyhedra Network Derived from Metal-Organic Frameworks for Capacitive Deionization. Scientific Reports, 6, Article No. 32784.
https://doi.org/10.1038/srep32784 |
[14] | Zheng, Y. and Qiao, S.-Z. (2017) Direct Growth of Well-Aligned MOF Arrays onto Various Substrates. Chem, 2, 751- 759. https://doi.org/10.1016/j.chempr.2017.05.014 |
[15] | Stavila, V., Talin, A.A. and Allendorf, M.D. (2014) MOF-Based Electronic and Optoelectronic Devices. The Royal Society of Chemistry, 43, 5994-6010. https://doi.org/10.1039/C4CS00096J |
[16] | Li, Z., Hu, X. and Shi, Z. (2020) MOFs-Derived Metal Oxides Inlayed in Carbon Nanofibers as Anode Materials for High-Performance Lithium-Ion Batteries. Applied Surface Science, 531, Article ID: 147290.
https://doi.org/10.1016/j.apsusc.2020.147290 |
[17] | Thompson, E., Danks, A.E., Bourgeois, L. and Schnepp, Z. (2015) Iron-Catalyzed Graphitization of Biomass. Green Chemistry, 17, 551-556. https://doi.org/10.1039/C4GC01673D |
[18] | Chen, Y., Li, X., Zhou, X., et al. (2014) Hollow-Tunneled Graphitic Carbon Nanofibers through Ni-Diffusion-Induced Graphitization as High-Performance Anode Materials. Energy & Environmental Science, 7, 2689-2696.
https://doi.org/10.1039/C4EE00148F |
[19] | Salunkhe, R.R., Kaneti, Y.V., Kim, J., et al. (2016) Nanoarchitectures for Metal-Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Accounts of Chemical Research, 49, 2796-2806.
https://doi.org/10.1021/acs.accounts.6b00460 |
[20] | Wang, K., Pei, S., He, Z., Huang, L., Zhu, S., Guo, J., Shao, H. and Wang, J. (2019) Synthesis of a Novel Porous Silicon Microsphere@Carbon Core-Shell Composite via in Situ MOF Coating for Lithium Ion Battery Anodes. Chemical Engineering Journal, 356, 272-281. https://doi.org/10.1016/j.cej.2018.09.027 |
[21] | Hou, Y., Li, J., Wen, Z., Cui, S., Yuan, C. and Chen, J. (2015) Co3O4 Nanoparticles Embedded in Nitrogen-Doped Porous Carbon Dodecahedrons with Enhanced Electrochemical Properties for Lithium Storage and Water Splitting. Nano Energy, 12, 1-8. https://doi.org/10.1016/j.nanoen.2014.11.043 |
[22] | Liu, S. (2020) Porous Si@C Composite Anode Material Pre-pared Using Dopamine as a Carbon Source for High-Per- formance Lithium-Ion Batteries. International Journal of Electrochemical Science, 15, 3479-3494.
https://doi.org/10.20964/2020.04.52 |
[23] | Kang, W., Kim, J.-C. and Kim, D.-W. (2020) Waste Glass Microfiber Filter-Derived Fabrication of Fibrous Yolk-Shell Structured Silicon/Carbon Composite Freestanding Electrodes for Lithium-Ion Battery Anodes. Journal of Power Sources, 468, Article ID: 228407. https://doi.org/10.1016/j.jpowsour.2020.228407 |
[24] | Wang, Z., Mao, Z., Lai, L., Okubo, M., Song, Y., Zhou, Y., Liu, X. and Huang, W. (2017) Sub-Micron Silicon/Pyrolyzed Carbon@Natural Graphite Self-Assembly Composite An-ode Material for Lithium-Ion Batteries. Chemical Engineering Journal, 313, 187-196. https://doi.org/10.1016/j.cej.2016.12.072 |
[25] | Ren, W., Wang, Y., Zhang, Z., Tan, Q., Zhong, Z. and Su, F. (2016) Carbon-Coated Porous Silicon Composites as High Performance Li-Ion Battery Anode Materials: Can the Production Process be Cheaper and Greener? Journal of Materials Chemistry A, 4, 552-560. https://doi.org/10.1039/C5TA07487H |