|
Material Sciences 2021
Ag、Cu掺杂的Bi2Te3热电材料的制备及特性研究
|
Abstract:
采用粉末热压烧结工艺制备了纯Bi2Te3及少量Ag、Cu元素掺杂的Bi2Te3片状热电材料。利用XRD、SEM、EDS及热电特性实验分析设备,对不同热电样品的晶体结构、表面形貌、组成成份及热电特性进行了比较分析。研究发现,适量的Ag、Cu元素掺杂确实可提升Bi2Te3材料的热电特性,相比Cu元素掺杂,Ag掺杂的Bi2Te3样品热电特性改善最大。在样品高温端温度为356 K条件下,掺杂Ag为0.1 wt%的样品Seebeck系数最大,约为?193.26 μV/K,ZT值也最大,约为1.04。
Pure Bi2Te3 and the Ag and Cu doped Bi2Te3 sheet thermoelectric material samples with different mass percentage were prepared by powder hot-pressing sintering method. The crystal structure, surface morphology, composition and thermoelectric properties of the synthesized samples were analyzed by XRD, SEM, EDS and the self-made thermoelectric characteristic testing equipment. It is found that the appropriate amount of Ag and Cu element doping into Bi2Te3 thermoelectric material can indeed improve its thermoelectric properties. Compared with the sample doped with Cu element, the Ag doped Bi2Te3 sample showed the best improvement in the thermoelectric proper-ties. Under the condition that the testing temperature is 356 K, the Seebeck coefficient of Bi2Te3 sample doped Ag element with 0.1 wt% is the largest, which is about ?193.26 μV/K, and its Zt value is also the largest, which is about 1.04.
[1] | 国家自然科学基金资助项目(61076104, 11847303),大连市科技创新基金重点资助项目(2019J12GX036)对本研究工作提供了资金支持。 |
[2] | 参考文献 |
[3] | Jagadish, P., Khalid, M. and Amin, N. (2019) Recycled Carbon Fibre/Bi2Te3 and Bi2S3 Hybrid Composite Doped with MWCNTs for Thermoelectric Applications. Composites, Part B, 175, 107085-107097.
https://doi.org/10.1016/j.compositesb.2019.107085 |
[4] | Scheele, M., Oeschler, N., Meier, K., Kornowski, A., Klinke, C. and Weller, H. (2009) Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles. Advanced Functional Materials, 19, 3476-3483.
https://doi.org/10.1002/adfm.200901261 |
[5] | Krishna, A., Vijayan, N., Singh, B., Thukral, K. and Maurya, K. (2016) Crystalline Perfection and Mechanical Investigations on Vertical Bridgman Grown Bismuth Telluride (Bi2Te3) Single Crystals for Thermoelectric Applications. Materials Science and Engineering A, 657, 33-37. https://doi.org/10.1016/j.msea.2016.01.033 |
[6] | Navratil, J., Klichova, I., Karamazov, S., Sramkova, J. and Horak. J. (1998) Behavior of Ag Admixtures in Sb2Te3 and Bi2Te3 Single Crystals. Journal of Solid State Chemistry, 140, 29-37. https://doi.org/10.1006/jssc.1998.7818 |
[7] | Liu, W.S., Zhang, Q., Lan, Y., Chen, S., Yan, X., Zhang, Q., Wang, H., Wang, D.Z., Chen, G. and Ren, Z.F. (2011) Thermoelectric Property Studies on Cu-Doped n-Type CuxBi2Te2.7Se0.3 Nanocomposites. Advanced Energy Materials, 1, 577-587. https://doi.org/10.1002/aenm.201100149 |
[8] | Zhang, Q.H., Ai, X., Wang, W.J., Wang, L.J., Chang, Y.X., Luo, W., Jiang, W. and Chen, L.D. (2015) Improved Thermoelectric Performance of Silver Nanoparticles-Dispersed Bi2Te3 Composites Deriving from Hierarchical Two-Phased Heterostructure. Advanced Functional Materials, 25, 966-976. https://doi.org/10.1002/adfm.201402663 |
[9] | Yang, J., Chen, R., Fan, X., Bao, S. and Zhu, W. (2006) Thermoelectric Properties of Silver-Doped n-Type Bi2Te3-Based Material Prepared by Mechanical Alloying and Subsequent Hot Pressing. Journal of Alloys and Compounds, 407, 330-333.
https://doi.org/10.1016/j.jallcom.2005.06.041 |
[10] | Chen, S., Logothetis, N., Ye, L. and Liu, J. (2015) A High Per-formance Ag Alloyed Nano-Scale n-Type Bi2Te3 Based Thermoelectric Material. Materials Today: Proceedings, 2, 610-619. https://doi.org/10.1016/j.matpr.2015.05.083 |
[11] | Lu, X.F., Zheng, Q., Gu, S.J., Guo, R., Su, L., Wang, J.C., Zhoua, Z.X., Fanb, Y.C., Jiang, W. and Wang, L.J. (2020) Enhanced TE Properties of Cu@Ag/Bi2Te3 Nanocom-posites by Decoupling Electrical and Thermal Properties. Chinese Chemical Letters, 31, 880-884. https://doi.org/10.1016/j.cclet.2019.07.034 |