|
基于RLWE认证密钥协商算法的设计
|
Abstract:
密钥协商算法允许参与者在非安全信道中交换信息共同协商会话密钥用于保密通信,是密码学中最关键技术之一。本文基于RLWE困难问题,利用四舍五入密钥共识算法,Filtering引理及哈希函数,设计了一个新的基于RLWE困难问题的认证密钥协商算法。新的认证密钥协商算法具有高效与可证明安全的特点。
Key agreement algorithm allows participants to exchange information in the open channel to gener-ate a secure temporary session key to ensure secret communication, which is one of the key tech-nologies in cryptography. In this paper, a novel authenticated key agreement algorithm based on RLWE difficulty problem is proposed using rounded key consensus algorithm, filtering lemma and hash function. The new authenticated key agreement algorithm is proved to be efficient and prova-bly secure.
[1] | Shamir, A. (1984) A Polynomial-Time Algorithm for Breaking the Basic Merkle-Hellman Cryptosystem. IEEE Transac-tions on Information Theory, 30, 699-704. https://doi.org/10.1109/TIT.1984.1056964 |
[2] | Coppersmith, D. (1996) Finding a Small Root of a Univariate Modular Equation. International Conference on the Theory and Applications of Cryptographic Techniques, Vol. 1070, 155-165. https://doi.org/10.1007/3-540-68339-9_14 |
[3] | Hoffstein, J., Pipher, J. and Silverman, J.H. (1998) NTRU: A Ring-Based Public Key Cryptosystem. International Algorithmic Number Theory Symposium, Vol. 1423, 267-288. https://doi.org/10.1007/BFb0054868 |
[4] | Gentry, C. (2009) Fully Homomorphic Encryption Using Ideal Lattices. Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, Bethesda, MD, May 2009, 169-178. https://doi.org/10.1145/1536414.1536440 |
[5] | Chen, L., Jordan, S., et al. (2016) Report on Post-Quantum Cryptography. US Department of Commerce, National Institute of Standards and Technology, Gaithersburg. |
[6] | Micciancio, D. and Regev, O. (2009) Lattice-Based Cryptography. In: Bernstein, D.J., Buchmann, J. and Dahmen, E., Eds., Post-Quantum Cryptography, Springer, Heidelberg, Berlin, New York, 147-191.
https://doi.org/10.1007/978-3-540-88702-7_5 |
[7] | Wang, X.Y. and Liu, M.J. (2014) Survey of Lattice-Based Cryptography. Journal of Cryptologic Research, 1, 13-27. |
[8] | 李子臣, 谢婷, 张卷美, 等. 基于RLWE的后量子认证密钥交换协议[J]. 计算机研究与发展, 2019, 56(12): 2694-2701. |
[9] | 中国密码协会. 全国密码算法设计竞赛公钥参赛算法[EB/OL]. http://sfjs.cacrnet.org.cn/site/term/list_72_1.html |
[10] | 高昕炜. 基于RLWE的后量子密钥交换协议构造和应用[D]: [硕士/博士学位论文]. 北京: 北京交通大学, 2019. |
[11] | Zhang, J., Yu, Y., Fan, S., et al. (2020) Tweaking the Asymmetry of Asymmetric-Key Cryptography on Lattices: Kems and Signatures of Smaller Sizes. IACR International Conference on Public-Key Cryptography, Vol. 12111, 37-65.
https://doi.org/10.1007/978-3-030-45388-6_2 |
[12] | Bos, J., Ducas, E., Kiltz, E., et al. (2018) CRYSTALS—Kyber: A CCA-Secure Module-Lattice-Based KEM. 2018 IEEE European Symposium on Security and Privacy (EuroS&P), London, UK, 353-367.
https://doi.org/10.1109/EuroSP.2018.00032 |
[13] | Ding, J., Gao, X., Takagi, T. and Wang, Y. (2019) One Sample Ring-LWE with Rounding and Its Application to Key Exchange. International Conference on Applied Cryptography and Network Security, Colombia, 5-7 June 2019, 323-343.
https://doi.org/10.1007/978-3-030-21568-2_16 |
[14] | Jin, Z. and Zhao, Y. (2019) Generic and Practical Key Estab-lishment from Lattice. International Conference on Applied Cryptography and Network Security, Colombia, 5-7 June 2019, 302-322.
https://doi.org/10.1007/978-3-030-21568-2_15 |
[15] | Regev, O. (2009) On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. Journal of the ACM, 56, Article No. 34. https://doi.org/10.1145/1568318.1568324 |
[16] | Lyubashevsky, V., Peikert, C. and Regev, O. (2013) On Ideal Lat-tices and Learning with Errors over Rings. Journal of the ACM, 60, Article No. 43. https://doi.org/10.1145/2535925 |
[17] | Bos, J.W., Lauter, K., Loftus, J. and Naehrig, M. (2013) Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme. IMA International Conference on Cryptography and Coding, Vol. 8308, 45-64.
https://doi.org/10.1007/978-3-642-45239-0_4 |
[18] | Brakerski, Z., Gentry, C. and Vaikuntanathan, V. (2012) (Leveled) Fully Homomorphic Encryption without Bootstrapping. Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, Cambridge, MA, January 2012, 309-325. https://doi.org/10.1145/2090236.2090262 |
[19] | Castryck, W., Iliashenko, I. and Vercauteren, F. (2016) On Error Distributions in Ring-Based LWE. LMS Journal of Computation and Mathematics, 19, 130-145. https://doi.org/10.1112/S1461157016000280 |
[20] | Feng, C. and Zhao, Y. (2017) Ideal Lattice Based Justifiable Secure Digital Signature Scheme. Computer Engineering, 43, 103-107. |
[21] | Lyubashevsky, V. (2009) Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. International Conference on the Theory and Application of Cryptology and Information Security Springer, Vol. 5912, 598-616.
https://doi.org/10.1007/978-3-642-10366-7_35 |