全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生长在PLA基片上的Ni81Fe19薄膜的磁性能研究
Magnetic Properties of Ni81Fe19 Thin Films on PLA Substrate

DOI: 10.12677/APP.2021.115034, PP. 289-295

Keywords: 聚乳酸,柔性,NiFe,磁性
PLA
, Flexible, NiFe, Magnetic Properties

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着电子器件微型化、集成化和柔性化技术的发展,NiFe薄膜器件与人体及其它器件集成化的过程对NiFe薄膜在不同基片,特别是几何弯曲基片上的异质生长提出了新的需求。本文研究了生长在聚乳酸(PLA)基片上Ni81Fe19薄膜的磁学性能,研究了基片的弯曲方向、弯曲程度和弯曲次数对薄膜磁性的影响。结果表明NiFe薄膜的磁性主要受基片弯曲带来的几何形状的影响。薄膜的矫顽力随弯曲半径的增加而增加,薄膜的弯曲半径可以小于1.5 mm。随着弯曲次数的增加,薄膜的矫顽力在略微增加后保持稳定,薄膜的最大弯曲次数可以达到2000次。
With the development of miniaturization, integration and flexibility of electronic devices, the integration of NiFe thin film devices with other devices puts forward new requirements for the growth of NiFe thin films on different substrates, especially on geometrically bent substrates. The magnetic properties of Ni81Fe19 films grown on polylactic acid (PLA) films were studied. The effects of bending direction, bending degree and bending times on the magnetic properties of the films were studied. The results show that the magnetic properties of NiFe films are mainly affected by the geometry of the substrate. The coercivity increases with the increase of the bending radius, which can be less than 1.5 mm. With the increase of the bending times, the coercivity of the film keeps stable after a slight increase, and the maximum bending times of the film can reach 2000.

References

[1]  Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H. and Sakurai, T. (2004) A Large-Area, Flexible Pressure Sensor Matrix with Organic Field-Effect Transistors for Artificial Skin Applications. Proceedings of the National Academy of Sciences of the United States of America, 101, 9966-9970.
https://doi.org/10.1073/pnas.0401918101
[2]  Bauer, S., Bauer-Gogonea, S., Graz, I.., Kaltenbrunner, M., Keplinger, C. and Schwdiauer, R. (2014) 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters. Advanced Materials, 26, 149-162.
https://doi.org/10.1002/adma.201303349
[3]  Ren, X., Pei, K., Peng, B., Zhang, Z., Wang, Z., Wang, X. and Chan, P.K.L. (2016) A Low-Operating-Power and Flexible Active-Matrix Organic-Transistor Temperature-Sensor Array. Ad-vanced Materials, 28, 4832-4838.
https://doi.org/10.1002/adma.201600040
[4]  Hines, L., Petersen, K., Guo, Z.L. and Sitti, M. (2017) Soft Actua-tors for Small-Scale Robotics. Advanced Materials, 29, Article ID: 1603483.
https://doi.org/10.1002/adma.201603483
[5]  Choi, M.K., Yang, J., Dong, C.K., Dai, Z., Kim, J., Seung, H., Kale, V.S., Sung, S.J., Chong, R.P. and Lu, N. (2018) Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Light-Emitting Diodes. Advanced Materials, 30, Article ID: 1703279.
https://doi.org/10.1002/adma.201703279
[6]  Kim, J., Shim, H.J., Yang, J., Choi, M.K., Kim, D.C., Kim, J., Hyeon, T. and Kim, D.H. (2017) Ultrathin Quantum Dot Display Integrated with Wearable Electronics. Advanced Mate-rials, 29, Article ID: 1700217.
https://doi.org/10.1002/adma.201700217
[7]  Aulin, C., Karabulut, E., Tran, A., Lars, W. and Tom, L. (2013) Transparent Nanocellulosic Multilayer Thin Films on Polylactic Acid with Tunable Gas Barrier Properties. ACS Applied Materials & Interfaces, 5, 7352-7359.
https://doi.org/10.1021/am401700n
[8]  王禹, 邹帅, 徐思晨, 等. 生长在类单晶硅片上的Ni81Fe19薄膜的微结构和磁性能研究[J]. 应用物理, 2019, 9(6): 300.
[9]  Zhang, Y., Shen, L., Li, M., Li, X., Lu, X., Lu, L., Chunrui, M., You, C., Che, A. and Huang, C. (2017) Flexible Quasi-Two-Dimensional CoFe2O4 Epitaxial Thin Films for Continuous Strain Tuning of Magnetic Properties. ACS Nano, 11, 8002-8009.
https://doi.org/10.1021/acsnano.7b02637

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133