全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新资源食品牡丹加工剩余物乙醇提取物成分分析及其活性的研究
Study on Component Analysis and Activity of Ethanol Extract from Processing Residues of New Resource Food Peony

DOI: 10.12677/HJFNS.2021.102017, PP. 133-147

Keywords: 牡丹籽壳,毒性,抗氧化活性,二十碳五烯酸(EPA),角鲨烯
Peony Seed Husk
, Toxicity, An-tioxidant Activity, Eicosapentaenoic Acid (EPA), Squalene

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究以油用牡丹加工剩余物籽壳为原料,乙醇为溶剂,提取物产率为响应值,通过单因素和正交实验制备最优提取工艺,最优工艺为:乙醇浓度95%、提取温度90℃、料液比1:10、提取时间4 h,提取物产率为24.68% ± 1.27%。牡丹籽壳提取物中检测到白藜芦醇(0.014%)和芍药苷(1.40%),在油部分中首次检测到二十碳五烯酸(0.0526%)和角鲨烯(0.007%),并进行扫描电镜、热重、红外光谱、多糖、总酚、总黄酮、体外抗氧化活性和鼠毒性实验。结果表明,牡丹加工剩余物乙醇提取物的体外抗氧化活性较强。提取物在0.05~0.8 g/kg范围内为无毒,能够使鼠血清中超氧化物歧化酶、过氧化氢酶酶活力增加,丙二醛含量降低。本研究将为油用牡丹企业深加工,以及籽壳提取物潜在应用提供基础数据支撑。
In this study, the seed shell of oil peony processing residue was used as raw material, ethanol was used as solvent, and the extraction yield was used as response value. The optimal extraction process was prepared by single factor and orthogonal experiment. The optimal extraction process was as follows: ethanol concentration was 95%, extraction temperature was 90?C, solid-liquid ratio was 1:10, extraction time was 4 h, and the extraction yield was 24.68% ± 1.27%. Resveratrol (0.014%) and paeoniflorin (1.40%) were detected in the extract of peony seed shell. Eicosapentaenoic acid (0.0526%) and squalene (0.007%) were detected in the oil for the first time. Scanning electron microscopy, thermogravimetry, infrared spectroscopy, polysaccharides, total phenols, total flavonoids,
in vitro antioxidant activity and mouse toxicity tests were carried out. The results showed that the ethanol extract of peony processing residue had strong antioxidant activity in vitro. The extract was nontoxic in the range of 0.05~0.8 g/kg, which could increase the activities of superoxide dismutase and catalase in serum and decrease the content of malondialdehyde. This study will provide basic data support for the deep processing of oil peony enterprises and the potential application of seed shell extract.

References

[1]  Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350-356.
https://doi.org/10.1021/ac60111a017
[2]  Madaan, R., Bansal, G., Kumar, S. and Sharma, A. (2011) Es-timation of Total Phenols and Flavonoids in Extracts of Actaea spicata Roots and Antioxidant Activity Studies. Indian Journal of Pharmaceutical Sciences, 73, 666-669.
https://doi.org/10.4103/0250-474X.100242
[3]  Busaba, T. and Siriporn, L. (2014) Phenolics, Flavonoids and An-tioxidant Activity of Vegetables as Thai Side Dish. Apcbee Procedia, 8, 99-104.
https://doi.org/10.1016/j.apcbee.2014.03.008
[4]  Liu, Y., Zhang, B., Ibrahim S.A., Gao, S.S., Yang, H. and Huang, W. (2016) Purification, Characterization and Antioxidant Activity of Polysaccharides from Flammulina velutipes Residue. Carbohydrate Polymers, 145, 71-77.
https://doi.org/10.1016/j.carbpol.2016.03.020
[5]  Jeddou, K., Chaari, F., Maktouf, S., Nouri-Ellouz, O., Claire, B. and Ghorbel, R. (2016) Structural, Functional, and Antioxidant Properties of Water-Soluble Polysaccharides from Pota-toes Peels. Food Chemistry, 205, 97-105.
https://doi.org/10.1016/j.foodchem.2016.02.108
[6]  李军, 涂宗财, 张露, 等. 热加工条件对牛血清白蛋白-葡萄糖糖基化体系抗氧化活性的影响[J]. 食品科学, 2020, 41(11): 7-13.
[7]  于玲, 左利娟. 油用牡丹开发利用研究进展[J]. 北京农业职业学院学报, 2017, 31(1): 23-31.
[8]  莫开菊, 柳圣, 程超. 生姜黄酮的抗氧化活性研究[J]. 食品科学,2006, 27(9): 110-115.
[9]  王宏雁, 张朋杰, 杨琴. 白藜芦醇纳米脂质体的制备与抗氧化性能[J]. 粮食与油脂, 2018, 31(3): 93-97.
[10]  Capellini, M.C., Giacomini, V., Cuevas, M.S. and Rodrigues, C.E.C. (2017) Corrigendum to “Rice Bran Oil Extraction Using Alcoholic Solvents: Physicochemical Characterization of Oil and Protein Fraction Functionality”. Industrial Crops and Products, 104, 133-143.
https://doi.org/10.1016/j.indcrop.2017.04.017
[11]  Silva, L.S., González, D.L., Villase?or, J., Sánchez, P. and Valverde, J.L. (2012) Thermogravimetric-Mass Spectrometric Analysis of Lignocellulosic and Marine Biomass Pyrolysis. Bioresource Technology, 109, 163-172.
https://doi.org/10.1016/j.biortech.2012.01.001
[12]  Attard, T.M., Bukhanko, N., Eriksson, D., Ar-shadi, M., Geladi, P., Bergsten, U., Budarin, V.L., Clark, J.H. and Hunt, A.J. (2018) Supercritical Extraction of Waxes and Lipids from Biomass: A Valuable First Step towards an Integrated Biorefinery. Journal of Cleaner Production, 177, 684-698.
https://doi.org/10.1016/j.jclepro.2017.12.155
[13]  Yang, H., Yan, R., Chen, H., Lee, D.H. and Zheng, C. (2007) Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86, 1781-1788.
https://doi.org/10.1016/j.fuel.2006.12.013
[14]  杨剀舟, 翟晓娜, 栾霞, 等. 响应面优化水-乙醇法提取云南咖啡生豆绿原酸工艺研究[J]. 粮油食品科技, 2020, 28(5): 156-162.
[15]  Guillen, M. and Cabo, N. (2000) Some of the Most Significant Changes in the Fourier Transform Infrared Spectra of Edible Oils under Oxidative Conditions. Journal of the Science of Food and Agriculture, 80, 2028-2036.
https://doi.org/10.1002/1097-0010(200011)80:14<2028::AID-JSFA713>3.0.CO;2-4
[16]  Toda, T.A., Sawada, M.M. and Rodrigues, C.E. (2016) Kinetics of Soybean Oil Extraction Using Ethanol as Solvent: Experimental Data and Modeling. Food and Bioproducts Processing, 98, 1-10.
https://doi.org/10.1016/j.fbp.2015.12.003
[17]  Cebi, N., Yilmaz, M.T., Sagdic, O., Yuce, H. and Yelboga, E. (2017) Prediction of Peroxide Value in Omega-3 Rich Microalgae Oil by ATR-FTIR Spectroscopy Combined with Chemometrics. Food Chemistry, 225, 188-196.
https://doi.org/10.1016/j.foodchem.2017.01.013
[18]  Liu, P., Xu, Y.F., Gao, X.D., Zhu, X.Y., Du, M.Z., Wang, Y.X., Deng, R.X. and Gao, J.Y. (2017) Optimization of Ultrasonic-Assisted Extraction of Oil from the Seed Kernels and Isolation of Monoterpene Glycosides from the Oil Residue of Paeonia lacti?ora Pall. Industrial Crops & Products, 107, 260-270.
https://doi.org/10.1016/j.indcrop.2017.04.013
[19]  Bessa, L.C.B.A., Ferreira, M.C., Rodrigues, C.E.C., Batista, E.A.C. and Meirelles, A.J.A. (2017) Simulation and Process Design of Continuous Countercurrent Ethanolic Extraction of Rice Bran Oil. Journal of Food Engineering, 202, 99-113.
https://doi.org/10.1016/j.jfoodeng.2017.01.019
[20]  高延静. 基于脂质体与DNA的酶动力学与细胞应用研究[D]: [博士学位论文]. 上海: 中国科学院大学, 2019: 144.
[21]  Reiter, R.J., Tan, D.X. and Galano, A. (2014) Melato-nin Reduces Lipid Peroxidation and Membrane Viscosity. Frontiers in Physiology, 5, 377.
https://doi.org/10.3389/fphys.2014.00377
[22]  Ho, E., Galougahi, K.K., Liu, C.C. and Bhindi, R.G.A. (2013) Bio-logical Markers of Oxidative Stress: Applications to Cardiovascular Research and Practice. Redox Biology, 1, 483-491.
https://doi.org/10.1016/j.redox.2013.07.006
[23]  Benaicheta, N., Labbaci, F.Z., Bouchenak, M. and Boukortt, F.O. (2016) Effect of Sardine Proteins on Hyperglycaemia, Hyperlipidaemia and Lecithin: Cholesterol Acyltransferase Activity, in High-Fat Diet-Induced Type 2 Diabetic Rats. British Journal of Nutrition, 115, 6-13.
https://doi.org/10.1017/S0007114515004195
[24]  Alzeer, J. and Abou Hadeed, K. (2016) Ethanol and Its Halal Status in Food Industries. Trends in Food Science and Technology, 58, 14-20.
https://doi.org/10.1016/j.tifs.2016.10.018
[25]  南芝润, 范月仙. 植物过氧化氢酶的研究进展[J]. 安徽农学通报, 2008, 14(5): 27-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133