全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

Facial Control Intramolecular Charge Transfer of Quinoid Conjugated Polymers for Efficient in Vivo NIR-II Imaging

DOI: https://doi.org/10.1021/acsami.9b02597

Full-Text   Cite this paper   Add to My Lib

Abstract:

Low-band gap conjugated polymers with donor–acceptor (D–A) structures have emerged as second near-infrared (NIR-II) fluorescence probes for biological imaging. However, how to control the intramolecular charge transfer (ICT) to maintain the low band gap and improve the NIR-II fluorescence intensity is an urgent issue. Here, the quinoid polymers have been developed to effectively regulate the ICT for brighter NIR-II fluorescence signals. Thiophene repeat chain units of different lengths (T, 2T, and 3T) were utilized to link with electron-withdrawing ester-substituted thieno[3,4-b]thiophene (TT) to alter the density of the electron-withdrawing side groups for controlling the ICT. By increasing the thiophene chain length from TT-T to TT-3T, the density of the electron-withdrawing groups decreased and the ICT was weakened. In the case of NIR absorption and NIR-II emission, weakened ICT leads to brighter NIR-II fluorescence. After the preparation of the water-soluble quinoid polymer probes (CPs), TT-3T CPs with weak ICT exhibited the brightest NIR-II fluorescent signals among the three quinoid polymer probes. Several NIR-II biomedical imaging applications, including in vivo cell tracking, blood vascular system images, and lymphatic drainage mapping, show that the TT-3T CP-based nanoprobe had excellent characteristics of long-term stability and high NIR-II spatial resolutions in vivo

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133