全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非下采样Shearlet变换与模糊对比度的合成孔径雷达图像增强

DOI: 10.11772/j.issn.1001-9081.2018030527

Keywords: 合成孔径雷达图像,非下采样Shearlet变换,阈值去噪,模糊对比度

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 针对合成孔径雷达(SAR)图像在成像和传输过程中引入噪声和干扰从而导致图像清晰度下降、细节丢失等问题,提出了一种非下采样Shearlet变换(NSST)与模糊对比度的SAR图像增强算法。首先,原始图像经NSST分解成一个低频分量和若干个高频分量;然后对低频分量进行线性增强以提高整体对比度,对高频分量采用阈值法进行增强以去除图像中的噪声;接着对处理后的两部分分量进行NSST反变换得到重构图像;最后采用模糊对比度算法对重构图像进行增强,提高图像细节信息和层次感,得到增强后的图像。对40幅图像的实验结果表明,与直方图均衡化、多尺度Retinex增强算法、基于Shearlet变换和多尺度Retinex的遥感图像增强算法、基于剪切波域改进Gamma校正的医学图像增强算法相比,该算法的图像峰值信噪比至少提升了22.9%,均方根误差至少降低了36.2%,能明显提升图像的清晰度,使图像的纹理信息更加清晰

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133