全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于反向学习的自适应差分进化算法

DOI: 10.11772/j.issn.1001-9081.2017071888

Keywords: 差分进化,自适应,高斯分布,反向学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为解决差分进化(DE)算法过早收敛与搜索能力低的问题,讨论对控制参数的动态调整,提出一种基于反向学习的自适应差分进化算法。该算法通过反向精英学习机制来增强种群的局部搜索能力,获取精确度更高的最优个体;同时,采用高斯分布随机性提高单个个体的开发能力,通过扩充种群的多样性,避免算法过早收敛,整体上平衡全局搜索与局部寻优的能力。采用CEC 2014中的6个测试函数进行仿真实验,并与其他差分进化算法进行对比,实验结果表明所提算法在收敛速度、收敛精度及可靠性上表现更优

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133