全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于随机森林和欠采样集成的垃圾网页检测

DOI: 10.11772/j.issn.1001-9081.2016.03.731

Keywords: 垃圾网页检测,随机森林,欠采样,集成分类器,机器学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 为解决垃圾网页检测过程中的不平衡分类和"维数灾难"问题,提出一种基于随机森林(RF)和欠采样集成的二元分类器算法。首先使用欠采样技术将训练样本集大类抽样成多个子样本集,再将其分别与小类样本集合并构成多个平衡的子训练样本集;然后基于各个子训练样本集训练出多个随机森林分类器;最后用多个随机森林分类器对测试样本集进行分类,采用投票法确定测试样本的最终所属类别。在WEBSPAM UK-2006数据集上的实验表明,该集成分类器算法应用于垃圾网页检测比随机森林算法及其Bagging和Adaboost集成分类器算法效果更好,准确率、F1测度、ROC曲线下面积(AUC)等指标提高至少14%,13%和11%。与Web spam challenge 2007 优胜团队的竞赛结果相比,该集成分类器算法在F1测度上提高至少1%,在AUC上达到最优结果

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133