|
- 2018
改进粒子滤波的弱小目标跟踪Keywords: 弱小目标 跟踪 粒子滤波 特征融合 Abstract: 针对低信噪比(SNR<3 dB)场景下弱小目标跟踪问题,提出了改进的粒子滤波跟踪方法。本文首先通过空间位置加权的方式来获取灰度特征,并将邻域运动模型和灰度概率图相结合来获取弱小目标运动特征,然后构建灰度与运动特性的联合观测模型来计算粒子权值。同时在跟踪过程中考虑到目标的灰度分布特性并不稳定,加入了自适应更新参考目标灰度模板的策略,最后采用几组真实场景来验证本文算法的跟踪效果。实验证明:和传统算法相比,本文算法增强了低信噪比(SNR<3 dB)场景下红外弱小目标跟踪能力。
|