Water and energy shortages came due to rapid population growth, living standards and rapid development in the agriculture and industrial sectors. Desalination tends to be one of the most promising water solutions; however, it is a process of intense energy. Membrane Capacitive Deionization (MCDI) has received considerable interest as a promising desalination technology, and MCDI research has increased significantly over the last 10 years. In addition, there are no guidelines for the design of Capacitive Deionization (CDI) implementation strategies for individual applications. This study, therefore; provides an alternative of CDI’s recent application developments, with emphasis placed on hybrid systems to address the technological needs of different relevant fields. The MCDI’s energy consumption is compared with the reverse osmosis literature data based on experimental data from laboratory-scale system. The study demonstrates that MCDI technology is a promising technology in the next few years with an extreme competition in water recovery, energy consumption and salt removal for reverse osmosis.
References
[1]
Tang, W.W., Wang, X.X., Zeng, G.M., Liang, J., Li, X.D., Xing, W.L., He, D., Tang, L. and Liu, Z.F. (2019) Electro-Assisted Adsorption of Zn (II) on Activated Carbon Cloth in Batch-Flow Mode: Experimental and Theoretical Investigations. Environmental Science & Technology, 53, 2670-2678. https://doi.org/10.1021/acs.est.8b05909
[2]
McNair, R., Cseri, L., Szekely, G. and Dryfe, R. (2020) Asymmetric Membrane Capacitive Deionization Using Anion-Exchange Membranes Based on Quaternized Polymer Blends. ACS Applied Polymer Materials, 2, 2946-2956. https://doi.org/10.1021/acsapm.0c00432
[3]
Yong, L., Pana, L., Xua, X., Lua, T., Zhuo, S. and Chua, D.H.C. (2014) Enhanced Desalination Efficiency in Modified Membrane Capacitive Deionization by Introducing Ion-Exchange Polymers in Carbon Nanotubes Electrodes. Electrochimica Acta, 130, 619-624. https://doi.org/10.1016/j.electacta.2014.03.086
[4]
Porada, S., Zhao, R., van der Wal, A., Presser, V. and Biesheuvel, P.M. (2013) Review on the Science and Technology of Water Desalination by Capacitive Deionization. Progress in Materials Science, 58, 1388-1442. https://doi.org/10.1016/j.pmatsci.2013.03.005
[5]
Subramani, A., Badruzzaman, M., Oppenheimer, J. and Jacangelo, J.G. (2011) Energy Minimization Strategies and Renewable Energy Utilization for Desalination: A Review. Water Research, 45, 1907-1920. https://doi.org/10.1016/j.watres.2010.12.032
[6]
Suss, M.E., Porada, S., Sun, X., Biesheuvel, P.M., Yoonf, J. and Presser, V. (2015) Water Desalination via Capacitive Deionization: What Is It and What Can We Expect from It? Energy & Environmental Science, 8, 2296-2319. https://doi.org/10.1039/C5EE00519A
[7]
Choi, J., Dorji, P., Shon, H.K. and Hong, S. (2019) Applications of Capacitive Deionization: Desalination, Softening, Selective Removal, and Energy Efficiency. Desalination, 449, 118-130. https://doi.org/10.1016/j.desal.2018.10.013
[8]
Tang, W., Liang, J., He, D., Gong, J.L., Tang, L., Liu, Z.F., Wang, D.B. and Zeng, G.M. (2019) Various Cell Architectures of Capacitive Deionization: Recent Advances and Future Trends. Water Research, 150, 225-251. https://doi.org/10.1016/j.watres.2018.11.064
[9]
Tan, C., He, C., Tang, W.W., Kovalsky, P., Fletcher, J. and David Waite, T. (2018) Integration of Photovoltaic Energy Supply with Membrane Capacitive Deionization (MCDI) for Salt Removal from Brackish Waters. Water research, 147, 276-286. https://doi.org/10.1016/j.watres.2018.09.056
[10]
Bales, C., Kovalsky, P., Fletcher, J. and David Waite, T. (2019) Low Cost Desalination of Brackish Groundwaters by Capacitive Deionization (CDI)—Implications for Irrigated Agriculture. Desalination, 453, 37-53. https://doi.org/10.1016/j.desal.2018.12.001
[11]
Qin, M., Deshmukh, A., Epsztein, R., Patel, S.K., Owoseni, O.M., Shane Walker, W. and Elimelech, M. (2019) Comparison of Energy Consumption in Desalination by Capacitive Deionization and Reverse Osmosis. Desalination, 455, 100-114. https://doi.org/10.1016/j.desal.2019.01.003
[12]
Dlugolecki, P. and van der Wal, A. (2013) Energy Recovery in Membrane Capacitive Deionization. Environmental Science & Technology, 47, 4904-4910. https://doi.org/10.1021/es3053202
[13]
Lee, J.B., Park, K.K., Eum, H.M. and Lee, C.W. (2006) Desalination of a Thermal Power Plant Wastewater by Membrane Capacitive Deionization. Desalination, 196, 125-134. https://doi.org/10.1016/j.desal.2006.01.011
[14]
Choi, J., Oh, Y., Chae, S. and Hong, S. (2019) Membrane Capacitive Deionization-Reverse Electrodialysis Hybrid System for Improving Energy Efficiency of Reverse Osmosis Seawater Desalination. Desalination, 462, 19-28. https://doi.org/10.1016/j.desal.2019.04.003
[15]
Alkuran, M., Orabi, M. and Scheinberg, N. (2008) Highly Efficient Capacitive Deionization (CDI) Water Purification System Using a Buck-Boost Converter. 2008 23rd Annual IEEE Applied Power Electronics Conference and Exposition, Austin, 24-28 Feburary 2008, 1926-1930. https://doi.org/10.1109/APEC.2008.4522991
[16]
Zhao, R., Porada, S., Biesheuvel, P.M. and van der Wal, A. (2013) Energy Consumption in Membrane Capacitive Deionization for Different Water Recoveries and Flow Rates, and Comparison with Reverse Osmosis. Desalination, 330, 35-41. https://doi.org/10.1016/j.desal.2013.08.017
[17]
Biesheuvel, P.M., Zhao, R., Porada, S. and van der Wal, A. (2011) Theory of Membrane Capacitive Deionization Including the Effect of the Electrode Pore Space. Journal of Colloid and Interface Science, 360, 239-248. https://doi.org/10.1016/j.jcis.2011.04.049
[18]
Jeon, S.I., Park, H.R., Yeo, J.G., Yang, S., Cho, C.H., Han, M.H. and Kim, D.K. (2013) Desalination via a New Membrane Capacitive Deionization Process Utilizing Flow-Electrodes. Energy & Environmental Science, 6, 1471-1475. https://doi.org/10.1039/c3ee24443a
[19]
Dorji, P., Choi, J., Kim, D.I., Phuntsho, S., Hong, S. and Shon, H.K. (2018) Membrane Capacitive Deionisation as an Alternative to the 2nd Pass for Seawater Reverse Osmosis Desalination Plant for Bromide Removal. Desalination, 433, 113-119. https://doi.org/10.1016/j.desal.2018.01.020
[20]
Al Marzooqi, F.A., Al Ghaferi, A.A., Saadat, I. and Hilal, N. (2014) Application of Capacitive Deionisation in Water Desalination: A Review. Desalination, 342, 3-15. https://doi.org/10.1016/j.desal.2014.02.031
[21]
Wang, L., Wang, M., Huang, Z.H., Cui, T., Gui, X., Kang, F., Wang, K. and Wu, D. (2011) Capacitive Deionization of NaCl Solutions Using Carbon Nanotube Sponge Electrodes. Journal of Materials Chemistry, 21, 18295-18299. https://doi.org/10.1039/c1jm13105b
[22]
Cetinkaya, A.Y. (2020) Life Cycle Assessment of Environmental Effects and Nitrate Removal for Membrane Capacitive Deionization Technology. Environmental Monitoring and Assessment, 192, Article No. 543. https://doi.org/10.1007/s10661-020-08501-0
[23]
Welgemoed, T.J. and Schutte, C.F. (2005) Capacitive Deionization TechnologyTM: An Alternative Desalination Solution. Desalination, 183, 327-340. https://doi.org/10.1016/j.desal.2005.02.054
[24]
Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W. and Poco, J.F. (1996) Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes. Journal of the Electrochemical Society, 143, 159-169. https://doi.org/10.1149/1.1836402
[25]
Biesheuvel, P.M. and Bazant, M.Z. (2010) Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes. Physical Review E, 81, Article ID: 031502. https://doi.org/10.1103/PhysRevE.81.031502
Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W. and Poco, J.F. (1996) Capacitive Deionization of NH4ClO4 Solutions with Carbon Aerogel Electrodes. Journal of Applied Electrochemistry, 26, 1007-1018. https://doi.org/10.1007/BF00242195
[28]
American Water Works Association (1917) M46 Reverse Osmosis and Nanofiltration: Manual of Water Supply Practices. 2nd Edition, American Water Works Association, Denver, 1917.
[29]
Peters, T.A. (1999) Desalination of Seawater and Brackish Water with Reverse Osmosis and the Disc Tube Module DT. Desalination, 123, 149-155. https://doi.org/10.1016/S0011-9164(99)00068-5
[30]
Feng, C.J., Hou, C.H., Chen, S.H. and Yu, C.P. (2013) A Microbial Fuel Cell Driven Capacitive Deionization Technology for Removal of Low Level Dissolved Ions. Chemosphere, 91, 623-628. https://doi.org/10.1016/j.chemosphere.2012.12.068
[31]
Xing, W., Liang, J., Tang, W.W., He, D., Yan, M., Wang, X.X., Luo, Y., Tang, N. and Huang, M. (2020) Versatile Applications of Capacitive Deionization (CDI)-Based Technologies. Desalination, 482, Article ID: 114390. https://doi.org/10.1016/j.desal.2020.114390
[32]
Feng, C., Tsai, C.C., Ma, C.Y., Yu, C.P. and Hou, C.H. (2017) Integrating Cost-Effective Microbial Fuel Cells and Energy-Efficient Capacitive Deionization for Advanced Domestic Wastewater Treatment. Chemical Engineering Journal, 330, 1-10. https://doi.org/10.1016/j.cej.2017.07.122
[33]
Forrestal, C., Xu, P. and Ren, Z.Y. (2012) Sustainable Desalination Using a Microbial Capacitive Desalination Cell. Energy & Environmental Science, 5, 7161-7167. https://doi.org/10.1039/c2ee21121a
[34]
Ma, D., Forrestal, C., Ji, M., Li, R., Ma, H. and Ren, Z.J. (2015) Membrane Configuration Influences Microbial Capacitive Desalination Performance. Environmental Science: Water Research & Technology, 1, 348-354. https://doi.org/10.1039/C5EW00003C
[35]
Stoll, Z.A., Forrestal, C., Ren, Z.J. and Pei, X. (2015) Shale Gas Produced Water Treatment Using Innovative Microbial Capacitive Desalination Cell. Journal of Hazardous Materials, 283, 847-855. https://doi.org/10.1016/j.jhazmat.2014.10.015