全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Potential of Biostimulants Based on PGPR Rhizobacteria Native to Benin’s Soils on the Growth and Yield of Maize (Zea mays L.) under Greenhouse Conditions

DOI: 10.4236/ojss.2021.113010, PP. 177-196

Keywords: Biostimulants, Plant Growth Promoting Rhizobacteria, Soil Fertility, Binder, Corn, Benin

Full-Text   Cite this paper   Add to My Lib

Abstract:

The application of biostimulants in agriculture represents an environmentally friendly alternative while increasing agricultural production. The aims of the study were to develop solid biostimulants based on five rhizobacteria native to Benin’s soils and to evaluate their efficacy on the growth and biomass yield of maize under greenhouse conditions on ferrallitic and ferruginous soils. Clay and peat were used as a conservation binder for the preparation of the biostimulants. These binders were used alone or combined in the different formulations with maize flour and sucrose. 10 g of biostimulants were applied at sowing in pots containing five kilograms of sterilised soil. The experimental design was a completely randomised block of 24 treatments with three replicates. The results obtained showed significant improvements (P < 0.001) in height (49.49%), stem diameter (32.7%), leaf area (66.10%), above-ground biomass (97.12%) and below-ground biomass (53.98%) on ferrallitic soil with the application of the clay + Pseudomonas putida biostimulant compared to the control. On the other hand, the use of the peat biostimulant + Pseudomonas syringae was more beneficial for plant growth on ferruginous soil. The height, stem diameter, leaf area, above-ground biomass and below-ground biomass of the plants under the influence of this biostimulant were improved by 83.06%, 44.57%, 102.94%, 86.84% and 42.68%, respectively, compared to the control. Therefore, these results confirm that Rhizobacteria express their potential through biostimulants formulated on maize. The formulated biostimulants can later be used by producers to improve crop productivity for sustainable agriculture.

References

[1]  PS/CNS-MAIS (2018) Plan Stratégique 2019-2034 du Centre National de Spécialisation sur le mais (CNS-MAIS), 87 P. Dépot Légal No 10936 du 27/12/2018, Bibliothèque Nationale du Bénin, 4è Trimestre.
[2]  Tshiabukole, J.P.K. (2018) Evaluation de la sensibilité aux stress hydriques du mais (Zea mays L.) cultivé dans la savane du Sud-Ouest de la RD Congo, cas de Mvuazi. Thèse de Doctorat, Faculté des Sciences Agronomiques, Département de Phytotechnie, Université Pédagogique Nationale, RD Congo, 162.
[3]  Adjadi, O., Lokossou, C., Azelokonou, O.G., Bankole, C.D., Djinadou, A.K., Ahoyo Adjovi, R.N. and Adjanohoun, A. (2015) Recueil de mets et de boissons à base de mais consommés au Bénin. Document Technique et d’Informations (DT&I). CNS-Mais, INRAB, PPAAO/WAAPP, ProCAD& MAEP/Bénin. Dépot légal N° 7931 du 04 juin 2015, 2ème Trimestre Bibliothèque Nationale (BN) du Bénin. 156 p.
[4]  Saidou, A., Balogoun, I., Kone, B., Gnangle, C.P. and Aho, N. (2012) Effet d’un système agroforestier à karité (Vitellariaparadoxacfgaertn) sur le sol et le potentiel de production du mais (Zeamaize) en zone Soudanienne du Bénin. International Journal of Biological and Chemical Sciences, 6, 2066-2082.
https://doi.org/10.4314/ijbcs.v6i5.16
[5]  Boominathan, U., Priya, K., Sabarish, R. and Shalini, A. (2020) Screening PGPR for Improving Seed Germination, Seedling Growth and Yield of Maize (Zea mays L.). Studies in Indian Place Names UGC Care Listed Journal, 40, No. 20.
[6]  Ojha, S.K., Benjamin, J.C. and Singh, A.K. (2016) Mass Production of Biofertilizer (Pseudomonas fluorescens). International Journal of Agricultural Science and Research (IJASR), 6, 415-418.
[7]  Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Iqbal Khan, M.S., Shahid, N. and Aaliya, K. (2017) Bottlenecks in Commercialisation and Future Prospects of PGPR. Applied Soil Ecology, 121, 102-117.
https://doi.org/10.1016/j.apsoil.2017.09.030
[8]  Diaz, P.A.E., Baron, N.C. and Rigobelo, E.C. (2019) Bacillus spp. as Plant Growth-Promoting Bacteria in Cotton under Greenhouse Conditions. Australian Journal of Crop Science, 13, 2003.
https://doi.org/10.21475/ajcs.19.13.12.p2003
[9]  Bouraoui, F. and Grizzetti, B. (2013) Modelling Mitigation Options to Reduce Diffuse Nitrogen Water Pollution from Agriculture. Science of the Total Environment, 468-469, 1267-1277.
https://doi.org/10.1016/j.scitotenv.2013.07.066
[10]  Adoko, M.Y., Agbodjato, N.A., Ouikoun, G.C., Amogou, O., Noumavo, P.A., Sina, H., Koda, A.D., Allagbé, M., AhoyoAdjovi, N., Adjanohoun, A. and Baba-Moussa, L. (2020) Inoculation of Pseudomonas putida in Farmer Environment to Improve Growth and Yield: Maize (Zea mays L.) Trial in Sothern, Central and Northern (Benin). IJPSS, 32, 9-21.
https://doi.org/10.9734/ijpss/2020/v32i630288
[11]  Adjanohoun, A., Noumavo, P.A., Sikirou, R., Allagbé, M., Gotoechan-Hodonou, H., Dossa, K.K., et al. (2012) Effets des rhizobactéries PGPR sur le rendement et les teneurs en macroéléments du mais sur sol ferralitique non dégradé au Sud-Bénin. International Journal of Biological and Chemical Sciences, 6, 279-288.
https://doi.org/10.4314/ijbcs.v6i1.24
[12]  Amogou, O., Dagbénonbakin, G., Agbodjato, A.N., Noumavo, A.P., Salako, K.V., Adoko, Y.M., GlèlèKakai, R., Adjanohoun, A. and Baba-Moussa, L. (2019) Applying Rhizobacteria on Maize Cultivation in Northern Benin: Effect on Growth and Yield. Agricultural Sciences, 10, 763-782.
http://www.scirp.org/journal/as
https://doi.org/10.4236/as.2019.106059
[13]  Agbodjato, N.A., Noumavo, P.A., Adjanohoun, A., Agbessi, L. and Baba-Moussa, L. (2016) Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on in Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.). Biotechnology Research International, 2016, Article ID: 7830182.
http://www.hindawi.com/journals/btri/2016/7830182
https://doi.org/10.1155/2016/7830182
[14]  Noumavo, A.P., Kochoni, E., Didagbé, Y.O., Adjanohoun, A., Allagbé, M., Sikirou, R., Gachomo, E.W., Kotchoni, O.S. and Baba-Moussa, L. (2013) Effect of Different Plant Growth Promoting Rhizobacteria on Maize Seed Germination and Seedling Development. American Journal of Plant Sciences, 4, 1013-1021.
https://doi.org/10.4236/ajps.2013.45125
[15]  Adjanohoun, A., Baba-Moussa, L., Glèlèkakai, R., Allagbé, M., Yèhouénou, B., Gotoechan-Hodonou, H., et al. (2011) Caractérisation des rhizobactéries potentiellement promotrices de la croissance végétative du mais dans différents agrosystèmes du Sud-Bénin. International Journal of Biological and Chemical Sciences, 5, 433-444.
https://doi.org/10.4314/ijbcs.v5i2.72073
[16]  Agbodjato, N.A., Noumavo, P.A., Baba-Moussa, F., Salami, H.A., Sina, H., Sezan, A., Bankole, H., Adjanohoun, A. and Baba-Moussa, L. (2015) Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Maize (Zea mays L.) in Central and Northern Benin (West Africa). Applied and Environmental Soil Science, 2015, Article ID: 901656.
https://doi.org/10.1155/2015/901656
[17]  MAEP (2016) Catalogue Béninois des Espèces et Variétés végétales (CaBEV), 2016. 4ème trimestre, INRAB/DPVPPAAO/ProCAD/MAEP & CORAF/WAAPP, Dépot légal N° 8982 du 21 octobre 2016, Bibliothèque Nationale (BN) du Bénin, 339.
[18]  Connick, W.J., Boyette, C.D. and McAlpine, J.R. (1991) Formulation Mycoherbicides Using a Pasta-Like Process. Biological Control, 1, 282-287.
https://doi.org/10.1016/1049-9644(91)90079-F
[19]  Walkley, A. and Black, I.A. (1934) An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.
https://doi.org/10.1097/00010694-193401000-00003
[20]  Bray, R.H. and Kurtz, L.T. (1945) Determination of Total Organic and Available Forms of Phosphorus in Soils. Soil Science, 59, 39-45.
https://doi.org/10.1097/00010694-194501000-00006
[21]  Thomas, G.W. (1982) Exchangeable Cations. In: Methods of Soil Analysis, Agronomy Monograph 9, ASA and SSSA, Madison, 154-157.
[22]  Ruget, F., Bonhomme, R. and Chartier, M. (1996) Estimation simple de la surface foliaire de plantes de mais en croissance. Agronomie, 16, 553-562.
https://doi.org/10.1051/agro:19960903
[23]  Yadav, J., Verma, J.P. and Tiwari, K.N. (2010) Effect of Plant Promoting Rhizobacteria on Seed Germination and Plant Growth Chickpea (Cicer arietinum L.) under in Vitro Conditions. Biological Forum, 2, 15-18.
[24]  R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
https://www.R-project.org
[25]  Pinheiro, J.C., Bates, D., DebRoy, S.S. and Sarkar, D. (2013) Nlme: Linear and Nonlinear Mixed-Effects Models. R Package Version 31-110.3.1-113.
[26]  Alboukadel, K. and Fabian, M. (2017) Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.5.
https://CRAN.R-project.org/package=factoextra
[27]  GlèlèKakai, R., Sodjinou, E. and Fonton, H.N. (2006) Conditions d’Application des Méthodes Statistiques Paramétriques, Bibliothèque Nationale, Bénin.
[28]  Husson, F., Josse, J. and Pagès, J. (2010) Principal Component Methods Hierarchical Clustering Partitional Clustering: Why Would We Need to Choose for Visualizing Data? Unpublished Data.
http://www.sthda.com/english/upload/hcpc_husson_josse.pdf
[29]  Jollife, I.T. (2002) Principal Component Analysis. 2nd Edition, Springer Verlag, New York.
https://goo.gl/SB86SR
[30]  Abdi, H. and Lynne, J.W. (2010) Principal Component Analysis. WIREs Computational Statistics, 2, 433-459.
https://doi.org/10.1002/wics.101
http://staff.ustc.edu.cn/~zwp/teach/MVA/abdi-awPCA2010.pdf
[31]  Bidogeza, J.C., Berentsen, B.P.M., De Graaff, J. and Oude-Lansink, A.G.J.M. (2009) A Typology of Farm Households for the Umutara Province in Rwanda. Food Science, 1, 321-335.
https://doi.org/10.1007/s12571-009-0029-8
[32]  Kumar, A., Maurya, B.R. and Raghuwanshi, R. (2014) Isolation and Characterization of PGPR and Their Effect on Growth, Yield and Nutrient Content in Wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3, 121-128.
https://doi.org/10.1016/j.bcab.2014.08.003
[33]  Mejri, D., Gamalero, E. and Souissi, T. (2012) Formulation Development of the Deleterious Rhizobacterium Pseudomonas trivialis X33d for Biocontrol of Brome (Bromus diandrus) in Durum Wheat. Journal of Applied Microbiology, 114, 219-228.
https://doi.org/10.1111/jam.12036
[34]  Albareda, M., Rodriguez-Navarro, D.N., Camacho, M. and Temprano, F.J. (2008) Alternatives to Peat as a Carrier for Rhizobia Inoculant: Solid and Liquid Formulations. Soil Biology and Biochemistry, 40, 2771-2779.
https://doi.org/10.1016/j.soilbio.2008.07.021
[35]  Nakkeeran, S., Kavitha, K., Mathiyazhagan, S., Fernando, W.G.D., Chandrasekar, G. and Renukadevi, P. (2004) Induced Systemic Resistance and Plant Growth Promotion by Pseudomonas chlororaphis Strain PA-23 and Bacillus subtilis Strain CBE4 against Rhizome Rot of Turmeric (Curcuma longa L.). Canadian Journal of Plant Pathology, 26, 417-418.
[36]  Hale, L., Luth, M., Kenney, R. and Crowley, D. (2014) Evaluation of Pinewood Biochar as a Carrier of Bacterial Strain Enterobacter cloacae UW5 for Soil Inoculation. Applied Soil Ecology, 84, 192-199.
https://doi.org/10.1016/j.apsoil.2014.08.001
[37]  Balogoun, I., Saidou, A., Ahoton, L.E., Adjanohoun, A., Amadji, G.L., Ezui, G., et al. (2013) Détermination des formules d’engrais minéraux et des périodes de semis pour une meilleure production du mais (Zea mays L.) au Sud et au Centre Bénin. BRAB, 1025-2355 et ISSN en ligne 1840-7099.
http://www.slire.net
[38]  Mishra, P.K., Bisht, S.C., Bisht, J.K. and Bhatt, J.C. (2012) Cold-Tolerant PGPRs as Bioinoculants for Stress Management. In: Maheshwari, D., Ed., Bacteria in Agrobiology: Stress Management, Springer, Berlin, 95-118.
[39]  Kunwar, V.S., Lamichhane, J. and Gauchan, D.P. (2018) Strategies to Improve Phosphorus Availability in a Sustainable Agricultural System. International Journal of Innovative Science and Research Technology, 3, 323-331.
[40]  Siddiq, S., Saleem, M.U., Asghar, N., Mahmood, K., Ahmad, K. and Anayat, A. (2018) Comparison of Conventional and Nonconventional Carriers for Bacterial Survival and Plant Growth. Academia Journal of Agricultural Research, 6, 130-134.
[41]  Scott, A.H., Garren, P., Ashley, A., Amber, G., Mary, B., Stacy, W., Michael, S. and Richard, F. (2020) Crop Yield, Ferritin and Fe(II) Boosted by Azospirillum brasilense (HM053) in Corn. Agronomy, 10, 394.
http://www.mdpi.com/journal/agronomy
https://doi.org/10.3390/agronomy10030394
[42]  Al-Erwy, A.S., Al-Toukhy, A. and Bafeel, S.O. (2016) Effect of Chemical, Organic and Bio Fertilizers on Photosynthetic Pigments, Carbohydrates and Minerals of Wheat (Triticum aestivum L.) Irrigated with Sea Water. International Journal of Advanced Research in Biological Sciences, 3, 296-310.
[43]  He, W., Adachi, S., Sage, R.F., Ookawa, T. and Hirasawa, T. (2017) Leaf Photosynthetic Rate and Mesophyll Cell Anatomy Changes during Ontogenesis in Backcrossed Indica × Japonica Rice Inbred Lines. Photosynthesis Research, 134, 27-38.
https://doi.org/10.1007/s11120-017-0403-x
[44]  Karnwal, A. and Dohroo, A. (2018) Effect of Maize Root Exudates on Indole-3-Acetic Acid Production by Rice Endophytic Bacteria under Influence of L-Tryptophan. F1000Research, 7, 112.
https://doi.org/10.12688/f1000research.13644.1
[45]  Satyaprakash, M., Nikitha, T., Reddi, E.U.B., Sadhana, B. and Satya Vani, S. (2017) A Review on Phosphorous and Phosphate Solubilising Bacteria and Their Role in Plant Nutrition. International Journal of Current Microbiology and Applied Sciences, 6, 2133-2144.
https://doi.org/10.20546/ijcmas.2017.604.251
[46]  Khan, A.L., Waqas, M., Kang, S.M., Al-Harrasi, A., Hussain, J., Al-Rawahi, A., Al-Khiziri, S., Ullah, I., Ali, L., Jung, H.Y. and Lee, I.J. (2014) Bacterial Endophyte Sphingomonas sp. LK11 Produces Gibberellins and IAA and Promotes Tomato Plant Growth. Journal of Microbiology, 52, 689-695.
https://doi.org/10.1007/s12275-014-4002-7
[47]  Noumavo, A.P., Agbodjato A.N., Gachomo, E.W., Salami, H.A., Baba-Moussa, F., Adjanohoun, A., Kotchoni and Baba-Moussa, L. (2015) Metabolic and Biofungicidal Properties of Maize Rhizobacteria for Growth Promotion and Plant Disease Resistance. African Journal of Biotechnology, 14, 811-819.
https://doi.org/10.1155/2015/901656
[48]  Agbodjato, N.A., Amogou, O., Noumavo, P.A., Dagbenonbakin, G., Hafiz, A.S., Kamirou, R., et al. (2018) Biofertilising, Plant-Stimulating and Biocontrol Potentials of Isolated PGPR Rhizobacteria in Central and Northern Benin. AJMR, 12, 664-672.
[49]  Ghaffari, H., Gholizadeh, A., Biabani, A., Fallah, A. and Mohammadian, M. (2018) Effect of Pseudomonas and Azotobacter with Different Levels of Nitrogen on Quantitative Traits and Yield Components of Rice (Variety of Shirudi). Academia Journal of Agricultural Research, 6, 213-221.
[50]  Schultz, N., Pereira, W., de Albuquerque Silva, P., Baldani, J.I., Boddey, R.M., Alves, B.J.R., Urquiaga, S. and Reis, V.M. (2017) Yield of Sugarcane Varieties and Their Sugar Quality Grown in Different Soil Types and Inoculated with a Diazotrophic Bacteria Consortium. Plant Production Science, 20, 366-374.
https://doi.org/10.1080/1343943X.2017.1374869
[51]  Noel, D.D., Nafan, D., Souleymane, S., Jean-Luc, M.A., Jesus, F. and Baba-Moussa, L. (2016) Combination of Rizhobacteria and Foliar Bio-Fertilizer Accelerating Maize and Soybean Crop Plants Growth Process in Arid Soil. Academia Journal of Agricultural Research, 4, 446-456.
[52]  Akhtar, N., Naveed, M., Khalid, M., Ahmad, N., Rizwan, M. and Siddique, S. (2018) Effect of Bacterial Consortia on Growth and Yield of Maize Grown in Fusarium Infested Soil. Soil & Environment, 37, 35-44.
https://doi.org/10.25252/SE/18/872
[53]  Paredes-Villanueva, J., Del Rosario, J.L., Urcia Pulido, M.M. and Zavaleta-Armas, J.C. (2020) Plant Growth Promoter Collection of Gluconacetobacter diazotrophicus from Northern Coast of Peru. Scientia Agropecuaria, 11, 15-21.
https://doi.org/10.17268/sci.agropecu.2020.01.02
[54]  Aquino, J.P.A., Macedo Junior, F.B., Antunes, J.E.L., Figueiredo, M.V.B., Alcantara Neto, F. and Araujo, A.S.F. (2019) Plant Growth-Promoting Endophytic Bacteria on Maize and Sorghum. Pesquisa Agropecuaria Tropical (Agricultural Research in the Tropics), 49, 56241-56241.
https://doi.org/10.1590/1983-40632019v4956241
[55]  Emami, S., Alikhani, H.A., Pourbabaei, A.A., Etesami, H., Motashare Zadeh, B. and Sarmadian, F. (2018) Improved Growth and Nutrient Acquisition of Wheat Genotypes in Phosphorus Deficient Soils by Plant Growth-Promoting Rhizospheric and Endophytic Bacteria. Soil Science and Plant Nutrition, 64, 719-727.
https://doi.org/10.1080/00380768.2018.1510284
[56]  Diarrassouba, N., Dago, D.N., Soro, S., Fofana, I.J., Silué, S. and Coulibaly, A. (2015) Multi-Variant Statistical Analysis Evaluating the Impact of Rhizobacteria (P. fluorescens) on Growth and Yield Parameters of Two Varieties of Maize (Zea mays. L). International Journal of Contemporary Applied Sciences, 2, 206-224.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133