|
基于STM32图像智能处理平台的设计开发
|
Abstract:
现有的图像智能处理平台所使用的各类NPU成本较高,并且非嵌入式平台,没有配套配件,无法进行单独工作;而现有的嵌入式平台缺乏计算机视觉以及机器学习相关的软件库。本文将致力于解决以上两种问题,因此我们设计并实现了一种基于STM32系列芯片的图像智能处理平台。该平台可以广泛应用于物联网、智慧家居、智慧城市等方面。我们为其开发了一套软件库,包含基本图像处理算法和多粒度级联森林(gcForest)推断,使得该平台有能力被应用于多种计算机视觉任务。基于STM32系列芯片,平台可以提供灵活的硬件拓展,允许扩展多种内存格式,提供功能、存储、性能的优化支持,满足了用户的个性化应用需求。
The various NPUs used by the existing image intelligent processing platforms are costly, and are non-embedded platforms without supporting accessories and cannot work alone; while the existing embedded platforms lack computer vision and machine learning-related software libraries. This article will focus on solving the above two problems, so we have designed and implemented an image intelligent processing platform based on STM32 series chips. The platform can be widely used in the Internet of Things, smart homes, smart cities, etc. We have developed a software library for it, including basic image processing algorithms and multi-granularity cascading forest (gcForest) inference, making the platform capable of being applied to a variety of computer vision tasks. Based on the STM32 series of chips, the platform can provide flexible hardware expansion, allow expansion of multiple memory formats, provide optimization support for functions, storage, and performance, and meet the user's personalized application needs.
[1] | Zhou, Z.H. and Feng, J. (2017) Deep Forest: Towards an Alternative to Deep Neural Networks. International Joint Conference on Artificial Intelligence, August 2017, Melbourne, 3553-3559. https://doi.org/10.24963/ijcai.2017/497 |
[2] | 白小龙, 邢靖虹. 一种STM32内部HSI时钟自适应串口通讯系统[P]. 中国专利, CN201911385663.9. 2019-12-29. |
[3] | 吴坤洋, 吴广栋, 高鉴. 基于STM32的简易电路测试仪的设计[J]. 微型电脑应用, 2020, 36(4): 79-81, 85. |
[4] | 胡武清, 朱晓峰. 基于STM32远近光灯自动控制系统[J]. 计算机产品与流通, 2020(7): 129. |
[5] | 陈文翔. 基于STM32的图像处理系统[J]. 科技研究, 2014(1): 191. |
[6] | 赵璞. 基于gcForest的不平衡分类技术研究与应用[D]: [硕士学位论文]. 重庆: 重庆邮电大学, 2019. |
[7] | 李志军, 崔利娟. 基于深度森林的交通标志识别方法研究[J]. 工业控制计算机, 2019, 32(5): 114-115,120. |
[8] | 郭佳盛. 基于深度学习的自适应学习的学生模型研究[D]: [硕士学位论文]. 厦门: 厦门大学, 2017. |
[9] | 翁理国, 刘万安, 施必成, 等. 基于多维多粒度级联森林的高原地区云雪分类[J]. 计算机应用, 2018, 38(8): 84-89. |
[10] | 刘广东, 邱晓晖. 基于多模式LBP与深度森林的指静脉识别[J]. 计算机技术与发展, 2018, 28(7): 83-87. |