全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mineral Fertilizer Use for Optimal Groundnut Production in the Sudano-Guinean and Sudanian Zones of Benin

DOI: 10.4236/ojss.2021.112005, PP. 72-92

Keywords: Soil Fertility, Response Surface, Box and Behnken Design, Modeling, Micronutrient

Full-Text   Cite this paper   Add to My Lib

Abstract:

Abstract This study aims to determine the optimal N, P, K, Mg and Zn rates for groundnut production on Ferric and Plintic Luvisol in the Sudano-Guinean and Sudanian zones of Benin Republic. Two years (2018 and 2019) experiment was carried out in the municipality of Ouessè in the Sudano-Guinean zone and Bembèrèkè in the Sudanian zone. The tested nutrient doses were N (0, 20 and 40 kgha1), P (0, 25 and 50 kgha1), K (0, 20 and 40 kgha1), Mg (0, 15 and 30 kgha1) and Zn (0, 4 and 8 kgha1). The Box and Behnken rotating design is used to define the N, P, K, Mg and Zn rate combinations leading to 46 combinations. A completely randomized bloc design was setting up considering farmers as replication. In total, four farmers’ fields were selected. A one-way analysis of variance is carried out on yield data, using the linear mixed-effect model. Response surface analyses were used to determine the optimal doses for each N, P, K, Mg and Zn. Nodule production (6.5 times higher than the control), number of gynophores (2.8 times higher than the control) and root length (19.2 ± 0.2 cm) of groundnut plants were significantly (p = 0.0001) improved with nutrient application. The response surface analysis shows that treatments N-P-K-Mg-Zn of 16.01-20.18-6.70-5.65-2.47 (in the Sudano-Guinean zone) and 13.1-25.07-11.47-0-1.82 (in the Sudanian zone) are the optimal rates that have induced optimal yield of 2.1 tha1 (i.e. 2.5 times the yield in the farmers’ field) pod yield and the best return on investment per hectare. Nevertheless, for a sustainable groundnut producproduction, treatment 13.1-25.07-11.47-20-1.82 is suggested as regular K input is required for the respect of the fertilization laws.

References

[1]  Aher, S.B., Lakaria, B.L., Kaleshananda, S., Singh, A.L., Ramana, S., Ramesh, K. and Thakur, J.K. (2015) Effect of Organic Farming Practices on Soil and Performance of Soybean (Glycine max) under Semi-Arid Tropical Conditions in Central India. Journal of Applied and Natural Science, 94, 67-71.
https://doi.org/10.31018/jans.v7i1.564
[2]  Sultana, R., Vales, M.I., Saxena, K.B., Rathore, A., Rao, S., Rao, S.K., Mula, M.G. and Kumar R.V. (2014) Waterlogging Tolerance in Pigeonpea (Cajanus cajan (L.) Millsp.): Genotypic Variability and Identification of Tolerant Genotypes. The Journal of Agricultural Science, 151, 659-671.
https://doi.org/10.1017/S0021859612000755
[3]  Karaboneye, F. (2013) Caractérisation de l’efficacité symbiotique de lignées africaines de soya à haute promiscuité. Mémoire Master, Université Lawal.
[4]  Zeinabou, H., Mahamane, S., Bismarck, N.H., Bado, B. V., Lompo, F. and Bationo, A. (2014) Effet de la combinaison des fumures organo-minérales et de la rotation niébé-mil sur la nutrition azotée et les rendements du miel au sahel. International Journal of Biological and Chemical Sciences, 8, 1620-1632.
https://doi.org/10.4314/ijbcs.v8i4.24
[5]  Bado, B.V. (2018) Role des légumineuses sur la fertilité des sols ferrugineux tropicaux des zones guinéenne et soudanienne du Burkina Faso. PhD, Université Laval, Canada.
[6]  Gogoi, N., Baruah, K.K. and Meena, R.S. (2018) Grain Legumes: Impact on Soil Health and Agroecosystem. In: Meena, R.S., Das, A., Yadav, G.S. and Lal, R., Eds., Legumes for Soil Health and Sustainable Management, Springer, Singapore, 511-539.
https://doi.org/10.1007/978-981-13-0253-4_16
[7]  Ghosh, P., Bandyopadhyay, K., Wanjari, R., Manna, M., Misra, A., Mohanty, M. and Rao, A.S. (2007) Legume Effect for Enhancing Productivity and Nutrient Use-Efficiency in Major Cropping Systems—An Indian Perspective: A Review. Journal of Sustainable Agriculture, 30, 59-86.
https://doi.org/10.1300/J064v30n01_07
[8]  Dugje, I.Y., Omoigui, L.O., Ekeleme, F., Kamara, A.Y. and Ajeigbe, H. (2009) Farmers’ Guide to Cowpea Production in West Africa. IITA, Ibadan, 20, 12-14.
[9]  Leghari, S.J., Wahocho, N.A., Laghari, G.M., HafeezLaghari, A., MustafaBhabhan, G., HussainTalpur, K. and Lashari, A.A. (2016) Role of Nitrogen for Plant Growth and Development: A Review. Advances in Environmental Biology, 10, 209-219.
[10]  Afolabi, S.G., Adekanmbi, A.A., Adeboye, M.K. and Bala, A. (2014) Effect of Various Input Combinations on the Growth, Nodulation and Yield of Inoculated Soybean in Minna. Nigeria International Journal of Agricultural and Rural Development, 17, 2006-2011.
[11]  Vanlauwe, B. and Giller, K.E. (2006) Popular Myths around Soil Fertility Management in Sub-Saharan Africa. Agriculture, Ecosystems and Environment, 116, 34-46.
https://doi.org/10.1016/j.agee.2006.03.016
[12]  Kihara, J., Sileshi, G.W., Nziguheba, G., Kinyua, M., Zingore, S. and Sommer, R. (2017) Application of Secondary Nutrients and Micronutrients Increases Crop Yields in Sub-Saharan Africa. Agronomy for Sustainable Development, 37, 25.
https://doi.org/10.1007/s13593-017-0431-0
[13]  Chianu, J.N. and Mairura, F. (2012) Mineral Fertilizers in the Farming Systems of Sub-Saharan Africa. A Review. Agronomy for Sustainable Development, 32, 545-566.
https://doi.org/10.1007/s13593-011-0050-0
[14]  Vanlauwe, B., Descheemaeker, K., Giller, K.E., Huising, J., Merckx, R., Nziguheba, G., Wendt, J. and Zingore, S. (2015) Integrated Soil Fertility Management in Sub-Saharan Africa: Unravelling Local Adaptation. Soil, 1, 491-508.
https://doi.org/10.5194/soil-1-491-2015
[15]  Kihara, J., Bolo, P., Kinyua, M., Rurinda, J. and Piikki, K. (2020) Micronutrient Deficiencies in African Soils and the Human Nutritional Nexus: Opportunities with Staple Crops. Environmental Geochemistry and Health, 1-19.
https://doi.org/10.1007/s10653-019-00499-w
[16]  Yosefi, K., Galavi, M., Ramrodi, M. and Mousavi, S.R. (2011) Effect of Bio-Phosphate and Chemical Phosphorus Fertilizer Accompanied with Micronutrient Foliar Application on Growth, Yield and Yield Components of Maize (Single Cross 704). Australian Journal of Crop Science, 5, 175-180.
[17]  Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S., Sajanlal, P.R. and Pradeep, T. (2012) Effect of Nanoscale Zinc Oxide Particles on the Germination, Growth and Yield of Peanut. Journal of Plant Nutrition, 35, 905-927.
https://doi.org/10.1080/01904167.2012.663443
[18]  Wakeel, A., Farooq, M., Bashir, K. and Ozturk, L. (2018) Micronutrient Malnutrition and Biofortification: Recent Advances and Future Perspectives. In: Plant Micronutrient Use Efficiency, Academic Press, Cambridge, 225-243.
https://doi.org/10.1016/B978-0-12-812104-7.00017-4
[19]  Malekzadeh-Shafarod, S., Bidarigh, S. and Sadeghi, S.M. (2013) The Evaluation on Effect of Nitrogen Fertilizer and Chelated Zinc on the Yield of Peanut (Arachis hypogae). Indian Journal of Fundamental and Applied Life Sciences, 3, 95-103.
[20]  Yu-Chuan, N.D.D. (2011) Effects of Different Magnesium Fertilizers on Growth and Nutrient Uptake of Soybean Plants. Modern Agricultural Sciences and Technology, No. 6, 188.
[21]  Walker, M.E., Gaines, T.P. and Parker, M.B. (1989) Potassium, Magnesium, and Irrigation Effects on Peanuts Grown on Two Soils. Communications in Soil Science and Plant Analysis, 20, 1011-1032.
https://doi.org/10.1080/00103628909368132
[22]  Li, Y., Li, Q.H., Wang, F., He, C.M. and Lin, X.J. (2007) Effects on Yield Quality and Benefit of Applying Homemade Sulphate-Potassium Magnesium Fertilizer to Peanut. Journal of Peanut Science, 1, 1-10.
[23]  Chabi, F.O., Dagbenonbakin, G.D., Oussou, B.T. and Saidou, A. (2019) Determinant of Groundnut (Arachis hypogaea L.) Yield Improvement in the Farmers Cropping Systems in Benin. African Journal of Agricultural Research, 14, 1967-1979.
[24]  FAO (2015) World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome.
[25]  Bloukounon, A.Y.G., Saidou, A., Babatounde, S., Balogoun, I., Arakogne, S., Kassavi, E. and Adegbidi, A. (2015) Effets des fumures NPK et déjections de petits ruminants sur la productivité et la valeur fourragère du mais et de l’arachide au Sud-Bénin. Annales des Sciences Agronomiques, 19, 213-238.
[26]  Yolmeh, M. and Jafari, S.M. (2017) Applications of Response Surface Methodology in the Food Industry Processes. Food and Bioprocess Technology, 10, 413-433.
https://doi.org/10.1007/s11947-016-1855-2
[27]  Gobarah, M.E., Mohammad, M.H. and Tawfik, M.M. (2006) Effect of Phosphorus Fertilizer and Foliar Spraying with Zinc on Growth, Yield and Quality of Groundnut under Reclaimed Sandy Soils. Journal of Applied Science Research, 2, 491-496.
[28]  Hemalatha, S., Praveen Rao, V., Padmaja, J. and Suresh, K. (2013) Anoverview on Role of Phosphorus and Water Deficits on Growth, Yield and Quality of Groundnut (Arachis hypogaea L.). International Journal of Applied Biology and Pharmaceutical Technology, 4, 188-201.
[29]  Farag, I.A.A. and Ahmed, A.Z. (2014) Croissance de l’arachide (Arachis hypogaea L.) et réponses de rendement à l’irradiation des graines et à la fertilisation minérale. IOSR Journal of Agriculture and Veterinary Science, 7, 63-70.
https://doi.org/10.9790/2380-07536370
[30]  Silva, E.D.B., Ferreira, E.A., Pereira, G.A.M., Silva, D.V. and Oliveira, A.J.M. (2017) Peanut Plant Nutrient Absorption and Growth. Revista Caatinga, 30, 653-661.
https://doi.org/10.1590/1983-21252017v30n313rc
[31]  Sulieman, S. and Tran, L.S.P. (2015) Phosphorus Homeostasis in Legume Nodules as an Adaptive Strategy to Phosphorus Deficiency. Plant Science, 239, 36-43.
https://doi.org/10.1016/j.plantsci.2015.06.018
[32]  Yusif, S.A., Muhammad, I., Hayatu, N.G., Sauwa, M.M., Tafinta, I.Y., Mohammed, M.A., Lukman, S.A., Abubakar, G.A. and Hussain, A.M. (2016) Effects of Biochar and Rhizobium Inoculation on Nodulation and Growth of Groundnut in Sokoto State, Nigeria. Journal of Applied Life Sciences International, 9, 1-9.
https://doi.org/10.9734/JALSI/2016/27297
[33]  Hadwani, G.J. and Gundalia, J.D. (2005) Effect of N, P and K Levels on Yield, Nutrient Content, Uptake and Quality of Summer Groundnut Grown on Typic Haplustepts. Journal of the Indian Society of Soil Science, 53, 125-128.
[34]  Irmak, S., Cil, A., Yucel, H. and Kaya, Z. (2015) Effects of Zinc Application on Yield and Some Yield Components in Peanut (Arachis hypogaea) in the Easthern Mediterranean Region. Journal of Agricultural Science, 22, 109-116.
https://doi.org/10.1501/Tarimbil_0000001373
[35]  Sengupta, A., Gunri, S.K. and Basu, T.K. (2016) Performance of Short Duration Groundnut (Arachis hypogaea L.) Variety (TG 51) as Influenced by Nutrient Management Strategy under New Alluvial Zone of West Bengal. Legume Research: An International Journal, 39, 91-95.
https://doi.org/10.18805/lr.v39i1.8869
[36]  Tavakoli, M.T., Chenari, A.I., Rezaie, M., Tavakoli, A., Shahsavari, M. and Mousavi, S.R. (2014) The Importance of Micronutrients in Agricultural Production. Advances in Environmental Biology, 31-36.
[37]  Cakmak, I., McLaughlin, M.J. and White, P. (2017) Zinc for Better Crop Production and Human Health. Plant and Soil, 4, 1-4.
https://doi.org/10.1007/s11104-016-3166-9
[38]  El-Dahshouri, M.F. (2018) Effect of Zinc Foliar Application at Different Physiological Growth Stages on Yield and Quality of Wheat under Sandy Soil Conditions. Agricultural Engineering International: CIGR Journal, 19, 193-200.
[39]  Farooq, M., Ullaha, A., Rehmana, A., Nawaza, A., Nadeema, A., Wakeele, A., Nadeema, F. and Siddiquec, K.H.M. (2018) Application of Zinc Improves the Productivity and Biofortification of Fine Grain Aromatic Rice Grown in Dry Seeded and Puddled Transplanted Production Systems. Field Crops Research, 216, 53-62.
https://doi.org/10.1016/j.fcr.2017.11.004
[40]  Singh, A.L. and Chaudhari, V. (2015) Zinc Biofortification in Sixty Groundnut Cultivars through Foliar Application of Zinc Sulphate. Journal of Plant Nutrition, 38, 1734-1753.
https://doi.org/10.1080/01904167.2015.1042165
[41]  Saidou, A., Balogoun, I., Ahoton, E.L., Igué, A.M., Youl, S. and Ezui, G. (2017) Fertilizer Recommendations for Corn Production in the South Sudan and Sudano-Guinean Zones of Benin. Nutrient Cycling in Agroecosystems, 110, 361-373.
https://doi.org/10.1007/s10705-017-9902-6
[42]  Abbas, Z., Kumar, A. and Kumar, A. (2018) Peanut Agriculture and Production Technology Integrated Nutrient Management. Apple Academic Press Inc., Oakville.
https://doi.org/10.1201/9781315166872

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133