全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improvement of Coding for Solar Radiation Forecasting in Dili Timor Leste—A WRF Case Study

DOI: 10.4236/jpee.2021.92002, PP. 7-20

Keywords: Shortwave Radiation, Solar Radiation, Timor Leste, WRF Code Improvement

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates the accuracy of weather research and forecasting by improving coding for solar radiation forecasting for location in Dili Timor Leste. Weather Research and Forecasting (WRF) model version 3.9.1 is used in this study for improvement purposes. The shortwave coding of WRF is used to improve in order to decrease error simulation. The importance of improving WRF coding at a specific region will reduce the bias and root mean square root when comparing to the observed data. This study uses high resolution based on the WRF modeling to stabilize the performance of forecasting. The decrease in error performance will be expected to enhance the value of renewable energy. The results show the root mean square error of the WRF default is 233 W/m2 higher compared to 205 W/m2 from the WRF improvement model. In addition, the Mean Bias Error (MBE) of the WRF default is obtained value 0.06 higher than 0.03 from the WRF improvement in rainy days. Meanwhile, on sunny days, the performance Root Mean Square Error (RMSE) of WRF default is 327 W/m2 higher than 223 W/m2 from the WRF improvement. The MBE of WRF improvement obtained 0.13 lower compared to 0.21 of WRF default coding. Finally, this study concludes that improving the shortwave code under the WRF model can decrease the error performance of the WRF simulation for local weather forecasting.

References

[1]  Timor Leste—Explore the Undiscovered.
https://www.timorleste.tl/east-timor/about/geography-climate
[2]  Verbois, H., Huva, R. and Rusydi, A. (2018) Wilfred Walsh Solar Irradiance Forecasting in the Tropics Using Numerical Weather Prediction and Statistical Learning. Solar Energy, 162, 265-277.
https://doi.org/10.1016/j.solener.2018.01.007
[3]  Mejia, J.F., Giordano, M. and Wilcox, E. (2018) Conditional Summertime Day-Ahead Solar Irradiance Forecast. Solar Energy, 163, 610-622.
https://doi.org/10.1016/j.solener.2018.01.094
[4]  Zhao, J., Guo, Z.-H., Su, Z.-Y., Zhao, Z.-Y., Xiao, X. and Liu, F. (2016) An Improved Multi-Step Forecasting Model Based on WRF Ensembles and Creative Fuzzy Systems for Wind Speed. Applied Energy, 162, 808-826.
https://doi.org/10.1016/j.apenergy.2015.10.145
[5]  Cheng, W.Y.Y., Liu, Y.B., Bourgeois, A.J., Wu, Y.H. and Haupt, S.E. (2017) Short-Term Wind Forecast of a Data Assimilation/Weather Forecasting System with Wind Turbine Anemometer Measurement Assimilation. Renewable Energy, 107, 340-351.
https://doi.org/10.1016/j.renene.2017.02.014
[6]  Lara-Fanego, V., Ruiz-Arias, J.A., Pozo-Vázquez, D., Santos-Alamillos, F.J. and Tovar-Pescador, J. (2012) Evaluation of the WRF Model Solar Irradiance Forecasts in Andalusia (Southern Spain). Solar Energy, 86, 2200-2217.
https://doi.org/10.1016/j.solener.2011.02.014
[7]  Kim, C.K. and Clarkson, M. (2016) Toward Improved Solar Irradiance Forecasts: Introduction of Post-Processing to Correct the Direct Normal Irradiance from the Weather Research and Fore Casting Model. Pure Application Geophysics, 173, 1751-1763.
https://doi.org/10.1007/s00024-015-1203-x
[8]  Alessandrini, S., Delle Monache, L., Sperati, S. and Cervone, G. (2015) An Analog Ensemble for Short-Term Probabilistic Solar Power Forecast. Application Energy, 157, 95-110.
https://doi.org/10.1016/j.apenergy.2015.08.011
[9]  Deppe, A.J., Gallus, W.A. and Takle, E.S. (2013) A WRF Ensemble for Improved Wind Speed Forecasts at Turbine Height. Weather Forecast, 28, 212-228.
https://doi.org/10.1175/WAF-D-11-00112.1
[10]  Lorenz, E., Remund, J., Müller, S.C., Traunmüller, W., Steinmaurer, G., Pozo, D., Ruiz-Arias, J.A., Fanego, V.L., Ramirez, L., Romeo, M.G., Kurz, C., Pomares, L.M. and Guerrero, C.G. (2009) Benchmarking of Different Approaches to Forecast Solar Irradiance. 24th European Photovoltaic Solar Energy Conference, Hamburg, 21-25 September 2009, 3.
https://pdfs.semanticscholar.org/0b83/a7bd46dfb3939ee22d3fed06f677931055e5.pdf
[11]  Dunlop, E.D., Wald, L. and Suri, M. (2006) Solar Energy Resource Management for Electricity Generation from Local Level to Global Scale. Nova Science Publishers Inc., Hauppauge, 205.
https://hal.archives-ouvertes.fr/hal-00125639
[12]  De Araujo, J.M.S. (2019) WRF Wind Speed Simulation and SAM Wind Energy Estimation: A Case Study in Dili Timor Leste. IEEE Access, 7, 35382-35393.
https://doi.org/10.1109/ACCESS.2019.2904755
[13]  Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D. and Duda, M. (2008) A Description of the Advanced Research WRF Version 3.
http://dx.doi.org/10.5065/D68S4MVH
[14]  NCL-NCEP Website.
https://rda.ucar.edu/datasets/ds083.2
[15]  Notes for Running WRF with the Aerosol-Aware Thompson Scheme (mp_physics = 28).
http://www2.mmm.ucar.edu/wrf/users/wrfv3.9/mp28_updated.html
[16]  Iacono, M.J., Mlawer, E.J., Clough, S.A. and Morcrette, J.-J. (2000) Impact of an Improved Longwave Radiation Model, RRTM, on the Energy Budget and Thermodynamic Properties of the NCAR Community Climate Mode, CCM3. Journal of Geophysical Research Atmospheres, 105, 14873-14890.
https://doi.org/10.1029/2000JD900091
[17]  Hong, S.Y., Noh, Y. and Dudhia, J. (2006) A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318-2341.
https://doi.org/10.1175/MWR3199.1
[18]  Bianco, L. (2008) Surface Layer Parameterization in WRF.
http://cires1.colorado.edu/science/groups/pielke/classes/at7500/Bianco_SFC.pdf
[19]  NCL (2018) The NCAR Command Language (Version 6.5.0).
[20]  Mathieu, D., Diagne, M., Boland, J., Schmutz, N. and Lauret, P. (2014) Post-Processing of Solar Irradiance Forecasts from WRF Model at Reunion Island. Solar Energy, 105, 99-108.
https://doi.org/10.1016/j.solener.2014.03.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133