|
闪锌矿中稀散元素镓和铟的富集规律研究
|
Abstract:
闪锌矿是镓(Ga)和铟(In)最重要的载体矿物,它在各种类型的矿床中普遍存在。Ga和In已被美国、欧盟、英国、中国等列入关键矿产名录,其在战略新兴产业发展中有非常重要的作用,是平板显示屏、电子半导体和光伏电池等产业必不可少的原料。在本研究中,运用ICPMS技术对澳大利亚和其他国家各类矿床闪锌矿样品中微量元素的含量进行了分析。所得出的结果与相关文献中收集的数据结合在一起,分析Ga和In在不同类型矿床中的分布情况(矿床类型包括矿床工业类型与矿床成因类型)。研究发现,Ga主要分布在热液矿床、层控矿床及银(Ag)矿床中;而In通常在热液矿床、喷流–沉积矿床(SEDEX)和锡(Sn)矿床中含量较高。同时也探讨了Ga和In之间的关系,Ga/In的比率可以用于区别矿床成因类型,即在层控矿床和密西西比河谷型(MVT)矿床中Ga/In > 1;在网状脉矿床中Ga/In ≈ 1;在热液、矽卡岩、火山成因块状硫化物(VMS)和SEDEX矿床中Ga/In < 1。Ga和In的富集均与Cu相关,且Ga的富集与Ag相关,因此分别为下列置换提供了证据:(Ag, Cu)+ + Ga3+?2Zn2+和Cu+ + In3+?2Zn2+。Ga与Co含量的负相关性表明富含Co的闪锌矿相对贫Ga,但是对于这一现象还没有明确的解释。
Sphalerite is the most important host mineral of gallium (Ga) and indium (In) as it is commonly observed in a wide range of deposit types. Ga and In have been listed as critical minerals by the United States, the European Union, the United Kingdom, China and other countries. Ga and In play a very important role in the development of strategic emerging industries, and are essential raw materials for industries, such as flat screens, electronic semiconductors and photovoltaic cells. In this study, ICPMS techniques have been used to investigate the distribution of minor and trace elements in sphalerite samples from both Australian and international deposits. These new results have been combined with data available in the literature, to examine the distributions of Ga and In in different types of deposits (both industrial types and genetic types). Gallium is found to be concentrated in hydrothermal, stratabound and Ag deposits, while indium is usually highest in sphalerite from hydrothermal, SEDEX and Sn deposits. The relationship between Ga and In is also explored, and the ratio of Ga/In can broadly discriminate between the genetic types. That is, in stratabound and MVT deposits Ga/In > 1; in stockwork deposits Ga/In ≈ 1; in hydrothermal, skarn, VMS and SEDEX deposits Ga/In < 1. Both gallium and indium concentrations correlate with Cu, and gallium concentration correlates with Ag, providing supporting evidence for the coupled(Ag, Cu)+ + Ga3+?2Zn2+和Cu+ + In3+?2Zn2+ substitutions respectively. The negative correlation between Ga and Co indicates that Co-rich sphalerite has relatively low Ga concentration, but an explanation for this remains unclear.
[1] | Mindat.org. Localities: Kosovo. http://www.mindat.org/loc-3052.html, 2020-10-23. |
[2] | Palinkas, S.S., Palinkas, L.A. and Molnar, F. (2006) Trace-Elements Content of Sphalerite and Associated Minerals in Stari Trg Pb-Zn Deposit, Trepa, Kosovo. Geochimica et Cosmochimica Acta, 70, A468.
https://doi.org/10.1016/j.gca.2006.06.1399 |
[3] | Bermanec, V., Avniar, S. and Zebec, V. (1995) Childrenite and Crandallite from the Stari Trg Mine (Trep?a), Kosovo: New Data. Mineralogy & Petrology, 52, 197-208. https://doi.org/10.1007/BF01163245 |
[4] | Mindat.org. Localities: Greenland. http://www.mindat.org/loc-30754.html, 2020-10-23. |
[5] | Sorensen, H., Bailey, J.C. and Rose-Hansen, J. (2011) The Emplacement and Crystallization of the U-Th-REE-Rich Agpaitic and Hyperagpaitic Lujavrites at Kvanefjeld, Llímaussaq Alkaline Complex, South Greenland. Bulletin of the Geological Society of Denmark, 59, 69-92. https://doi.org/10.37570/bgsd-2011-59-08 |
[6] | Omori, S. and Mariko, T. (1999) Physicochemical Environment during the Formation of the Mozumi Skarn-Type Pb-Zn-Ag Deposit at the Kamioka Mine, Central Japan: A Thermochemical Study. Resource Geology, 49, 223-232.
https://doi.org/10.1111/j.1751-3928.1999.tb00048.x |
[7] | Mindat.org. Localities: UK. http://www.mindat.org/loc-221672.html, 2020-10-23. |
[8] | Somerfield, P.J., Gee, J.M. and Warwick, R.M. (1994) Benthic Community Structure in Relation to an Instantaneous Discharge of Waste Water from a Tin Mine. Marine Pollution Bulletin, 28, 363-369.
https://doi.org/10.1016/0025-326X(94)90273-9 |
[9] | Hunt, L.E. and Howard, A.G. (1994) Arsenic Speciation and Distribution in the Carnon Estuary Following the Acute Discharge of Contaminated Water from a Disused Mine. Marine Pollution Bulletin, 28, 33-38.
https://doi.org/10.1016/0025-326X(94)90183-X |
[10] | Mindat.org. Localities: Canada. http://www.mindat.org/loc-514.html, 2020-10-23. |
[11] | Sherlock, R.L., Lee, J.K.W. and Cousens, B.L. (2004) Geologic and Geochronologic Constraints on the Timing of Mineralization at the Nanisivik Zinc-Lead Mississippi Valley-Type Deposit, Northern Baffin Island, Nunavut, Canada. Economic Geology, 99, 279-293. https://doi.org/10.2113/gsecongeo.99.2.279 |
[12] | McNaughton, K. and Smith, T.E. (1986) A Fluid Inclusion Study of Sphalerite and Dolomite from the Nanisivik Lead-Zinc Deposit, Baffin Island, Northwest Territories, Canada. Economic Geology, 81, 713-720.
https://doi.org/10.2113/gsecongeo.81.3.713 |
[13] | Arne, D.C. and Kissin, S.A. (1989) The Significance of “Diagenetic Crystallization Rhythmites” at the Nanisivik Pb-Zn-Ag Deposit, Baffin Island, Canada. Mineralium Deposita, 24, 230-232. https://doi.org/10.1007/BF00206447 |
[14] | Ghazban, F., Schwarcz, H.P. and Ford, D.C. (1990) Carbon and Sulfur Isotope Evidence for in Situ Reduction of Sulfate, Nanisivik Lead-Zinc Deposits, Northwest Territories, Baffin Island, Canada. Economic Geology, 85, 360-375.
https://doi.org/10.2113/gsecongeo.85.2.360 |
[15] | Arne, D.C., Curtis, L.W. and Kissin, S.A. (1991) Internal Zonation in a Carbonate-Hosted Zn-Pb-Ag Deposit. Nanisivik, Barfin Island, Canada. Economic Geology, 86, 699-717. https://doi.org/10.2113/gsecongeo.86.4.699 |
[16] | Mindat.org. Localities: Ireland. http://www.mindat.org/loc-4495.html, 2020-10-23. |
[17] | Schneider, J., Quadt, A.V., Wilkinson, J.J. and Boyce, A.J. (2007) Age of the Silvermines Irish-Type Zn-Pb Deposit from Direct Rb-Sr Dating of Sphalerite. Proceedings of the 9th Biennial SGA Meeting, Dublin, 20-23 August 2007, 373-376. |
[18] | Reed, C.P. and Wallace, M.W. (2004) Zn-Pb Mineralisation in the Silvermines District, Ireland: A Product of Burial Diagenesis. Mineralium Deposita, 39, 87-102. https://doi.org/10.1007/s00126-003-0384-x |
[19] | Axelsson, M.D. and Rodushkin, I. (2001) Determination of Major and Trace Elements in Sphalerite Using Laser Ablation Double Focusing Sector Field ICPMS. Journal of Geochemical Exploration, 72, 81-89.
https://doi.org/10.1016/S0375-6742(00)00166-7 |
[20] | Kucha, H. (1989) Macrotextures, Microtextures, and Carbo-nate-Sulfide Relationships in Stratiform, Carbonate-Hosted Zn-Pb Orebodies of Silvermines, Ireland. Mineralium Deposita, 24, 48-55. https://doi.org/10.1007/BF00206723 |
[21] | Samson, I.M. and Russell, M.J. (1987) Genesis of the Silvermines Zinc-Lead-Barite Deposit, Ireland; Fluid Inclusion and Stable Isotope Evidence. Economic Geology, 82, 371-394. https://doi.org/10.2113/gsecongeo.82.2.371 |
[22] | Taylor, S. (1984) Structural and Paleotopographic Controls of Lead-Zinc Mineralization in the Silvermines Orebodies, Republic of Ireland. Economic Geology, 79, 529-548. https://doi.org/10.2113/gsecongeo.79.3.529 |
[23] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-121096.html, 2020-10-23. |
[24] | Symons, D.T.A. and Arne, D.C. (2003) Paleomagnetic Dating of Mineralization in the Kapok MVT Deposit, Lennard Shelf, Western Australia. Journal of Geochemical Exploration, 78-79, 267-272.
https://doi.org/10.1016/S0375-6742(03)00022-0 |
[25] | Eggins, S.M., Woodhead, J.D., Kinsley, L.P.J., Mortimer, G.E. and Handler, M.R. (1997) A Simple Method for the Precise Determination of ≥ 40 Trace Elements in Geological Samples by ICPMS Using Enriched Isotope Internal Standardisation. Chemical Geology, 134, 311-326. https://doi.org/10.1016/S0009-2541(96)00100-3 |
[26] | Lin, Y., Cook, N.J., Ciobanu, C.L., Liu, Y.P., Liu, T.G., Gao, W., Yang, Y.L. and Danyushevskiy, L. (2011) Trace and Minor Elements in Sphalerite from Base Metal Deposits in South China: A LA-ICPMS Study. Ore Geology Reviews, 39, 188-217. https://doi.org/10.1016/j.oregeorev.2011.03.001 |
[27] | Seifert, T. and Sandmann, D. (2006) Mineralogy and Geochemistry of Indium-Bearing Polymetallic Vein-Type Deposits: Implications for Host Minerals from the Freiberg District, Eastern Erzgebirge, Germany. Ore Geology Reviews, 28, 1-31. https://doi.org/10.1016/j.oregeorev.2005.04.005 |
[28] | Viets, J.G., Hopkins, R.T. and Miller, B.M. (1992) Variations in Minor and Trace Metals in Sphalerite from Mississippi Valley-Type Deposits of the Ozark Region; Genetic Implications. Economic Geology, 87, 1897-1905.
https://doi.org/10.2113/gsecongeo.87.7.1897 |
[29] | Benedetto, R.D., Bernardini, G.P., Costagliola, P., Plant, D. and Vaughan, D.J. (2005) Compositional Zoning in Sphalerite Crystals. American Mineralogist, 90, 1384-1392. https://doi.org/10.2138/am.2005.1754 |
[30] | Moskalyk, R.R. (2003) Gallium: The Backbone of the Electronics Industry. Minerals Engineering, 16, 921-929.
https://doi.org/10.1016/j.mineng.2003.08.003 |
[31] | Carrillo-Rosúa, J., Morales-Ruano, S. and Hach-Alí, P.F. (2008) Textural and Chemical Features of Sphalerite from the Palai-Islica Deposit (SE Spain): Implications for Ore Genesis and Color. Neues Jahrbuch Für Mineralogie Abhandlungen Journal of Mineralogy & Geochemistry, 185, 63-78. https://doi.org/10.1127/0077-7757/2008/0109 |
[32] | H?ll, R., Kling, M. and Schroll, E. (2007) Metallogenesis of Germanium—A Review. Ore Geology Reviews, 30, 145-180. https://doi.org/10.1016/j.oregeorev.2005.07.034 |
[33] | Alfantazi, A.M. and Moskalyk, R.R. (2003) Processing of In-dium: A Review. Minerals Engineering, 16, 687-694.
https://doi.org/10.1016/S0892-6875(03)00168-7 |
[34] | Sinclair, W.D., Kooiman, G.J.A., Martin, D.A. and Kjarsgaard, I.M. (2006) Geology, Geochemistry and Mineralogy of Indium Resources at Mount Pleasant, New Brunswick, Canada. Ore Geology Reviews, 28, 123-145.
https://doi.org/10.1016/j.oregeorev.2003.03.001 |
[35] | Gatterer, A. (1941) Untersuchungen über die Nebenbestandteile von Erzmineralien Norwegischer Zinkblendenführender Vorkommen: Oftedal, Ivar. Skrifter uitgitt av Det Norske Videnskaps-Akademi Oslo I. Mat.-Naturv. Klasse Nr 8, 1-103. Spectrochimica Acta, 2, 135. https://doi.org/10.1016/S0371-1951(41)80076-9 |
[36] | Cook, N.J., Ciobanu, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and Minor Elements in Sphalerite: A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73, 4761-4791.
https://doi.org/10.1016/j.gca.2009.05.045 |
[37] | 毛景文, 杨宗喜, 谢桂青, 袁顺达, 周振华. 关键矿产——国际动向与思考[J]. 矿床地质, 2019, 38(4): 689-698. |
[38] | 赵汀, 秦鹏珍, 王安建, 王高尚, 李建武, 刘超, 刘毅飞. 镓矿资源需求趋势分析与中国镓产业发展思考[J]. 地球学报, 2017, 38(1): 77-84. |
[39] | 毛景文, 袁顺达, 谢桂青, 宋世伟, 周琦, 高永宝, 刘翔, 付小方, 曹晶, 曾载淋, 李通国, 樊锡银. 21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 矿床地质, 2019, 38(5): 935-969. |
[40] | 张伟波, 陈秀法, 陈玉明, 曹艳华, 何学洲, 黄霞, 邓攀. 全球铟矿资源供需现状与我国开发利用建议[J]. 矿产保护与利用, 2019, 39(5): 1-8. |
[41] | 敦妍冉, 荆海鹏, 洛桑才仁, 张万益, 宋泽峰. 全球镓矿资源分布、供需及消费趋势研究[J]. 矿产保护与利用, 2019, 39(5): 9-15, 25. |
[42] | 徐净, 李晓峰. 铟矿床时空分布、成矿背景及其成矿过程[J]. 岩石学报, 2018, 34(12): 3611-3626. |
[43] | 李晓峰, 徐净, 朱艺婷, 吕友虎. 关键矿产资源铟: 主要成矿类型及关键科学问题[J]. 岩石学报, 2019, 35(11): 3292-3302. |
[44] | Bertelli, M., Williams, P.J., Baker, T., Lisoweic, N. and Boyce, A. (2009) Nature and Origin of Ore-Forming Fluids in the Ravenswood Gold System, North Queensland: Evidence from Fluid Inclusions and Stable Isotopes. Economic Geology Research Unit, 1, 344-346. |
[45] | Neindorf, L. and Dennis, R. (1989) Ravenswood Gold Mine, an Experience of Rapid Exploration, Development and Production North Queensland Gold 89 Conference. |
[46] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-186.html, 2020-10-23. |
[47] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-17051.html, 2020-10-23. |
[48] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-125689.html, 2020-10-23. |
[49] | (2006) Australian Company News Bites Stock Re-port. |
[50] | (2008) Australian Company News Bites Stock Report. |
[51] | Ciobanu, C.L., Birch, W.D., Cook, N.J., Pring, A. and Grundler, P.V. (2010) Petrogenetic Significance of Au-Bi-Te-S Associations: The Example of Maldon, Central Victorian Gold Province, Australia. Lithos, 116, 1-17.
https://doi.org/10.1016/j.lithos.2009.12.004 |
[52] | Arne, D.C., Bierlein, F.P., Morgan, J.W. and Stein, H.J. (2001) Re-Os Dating of Sulfides Associated with Gold Mineralization in Central Victoria, Australia. Economic Geology, 96, 1455-1459.
https://doi.org/10.2113/gsecongeo.96.6.1455 |
[53] | Kucha, H. and Plimer, I.R. (1994) Gold in Organic Matter, Maldon, Victoria, Australia. Economic Geology, 94, 1173-1180. https://doi.org/10.2113/gsecongeo.94.7.1173 |
[54] | (2001) Australian Alps Mining Heritage Conservation & Presentation Strategy. |
[55] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-65284.html, 2020-10-23. |
[56] | Solomon, M., Tornos, F., Large, R.R., Badham, J.N.P., Both, R.A. and Zaw, K. (2004) Zn-Pb-Cu Volcanic-Hosted Massive Sulphide Deposits: Criteria for Distinguishing Brine Pool-Type from Black Smoker-Type Sulphide Deposition. Ore Geology Reviews, 25, 259-283. https://doi.org/10.1016/j.oregeorev.2004.01.003 |
[57] | Large, R.R., Allen, R.L., Blake, M.D. and Herrmann, W. (2001) Hydrothermal Alteration and Volatile Element Halos for the Rosebery K Lens Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania. Economic Geology, 96, 1055-1072. https://doi.org/10.2113/gsecongeo.96.5.1055 |
[58] | Pwa, A. and van Moort, J.C. (1999) Geochemical Exploration Using Acid Insoluble Residues of Rocks for Volcanic-Hosted Massive Sulphide Deposits, Rosebery Area, Western Tasmania. Journal of Geochemical Exploration, 66, 55-69. https://doi.org/10.1016/S0375-6742(99)00022-9 |
[59] | Bottrill, R.S., Williams, P.A. and Kemp, N.R. (2006) Crocoite and Associated Minerals from Tasmania. Australian Journal of Mineralogy, 12, 59-90. |
[60] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-171.html, 2020-10-23. |
[61] | Barnes, S.J., Gole, M.J. and Hill, R.E.T. (1988) The Agnew Nickel Deposit, Western Australia: Part I. Structure and Stratigraphy. Economic Geology, 83, 524-536. https://doi.org/10.2113/gsecongeo.83.3.524 |
[62] | Barnes, S.J., Gole, M.J. and Hill, R.E.T. (1988) The Agnew Nickel Deposit, Western Australia; Part II, Sulfide Geochemistry, with Emphasis on the Platinum-Group Elements. Economic Geology, 83, 537-550.
https://doi.org/10.2113/gsecongeo.83.3.537 |
[63] | Gole, M.J., Barnes, S.J. and Hill, R.E.T. (1987) The Role of Fluids in the Metamorphism of Komatiites, Agnew Nickel Deposit, Western Australia. Contributions to Mineralogy and Petrology, 96, 151-162.
https://doi.org/10.1007/BF00375229 |
[64] | Solomon, M., Gemmell, J.B. and Zaw, K. (2004) Nature and Origin of the Fluids Responsible for Forming the Hellyer Zn-Pb-Cu, Volcanic-Hosted Massive Sulphide Deposit, Tasmania, Using Fluid Inclusions, and Stable and Radiogenic Isotopes. Ore Geology Reviews, 25, 89-124. https://doi.org/10.1016/j.oregeorev.2003.11.001 |
[65] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-48916.html, 2020-10-23. |
[66] | Bottomer, L.R. (1986) Epithermal Silver-Gold Mineralization in the Drake Area, Northeastern New South Wales. Journal of the Geological Society of Australia, 33, 457-473. https://doi.org/10.1080/08120098608729384 |
[67] | Spry, P.G. and Wonder, J.D. (1989) Manganese-Rich Garnet Rocks Associated with the Broken Hill Lead-Zinc-Silver Deposit, New South Wales, Australia. Canadian Mineralogist, 27, 275-292. |
[68] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-105886.html, 2020-10-23. |
[69] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-16479.html, 2020-10-23. |
[70] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-28499.html, 2020-10-23. |
[71] | Ashley, P.M., Lottermoser, B.G., Collins, A.J. and Grant, C.D. (2004) Environmental Geochemistry of the Derelict Webbs Consols Mine, New South Wales, Australia. Environmental Geology, 46, 591-604.
https://doi.org/10.1007/s00254-004-1063-7 |
[72] | Fernandez, F.G., Both, R.A., Mangas, J. and Arribas, A. (2000) Metallogenesis of Zn-Pb Carbonate-Hosted Mineralization in the Southeastern Region of the Picos de Europa (Central Northern Spain) Province: Geologic, Fluid Inclusion, and Stable Isotope Studies. Economic Geology, 95, 19-40. https://doi.org/10.2113/gsecongeo.95.1.19 |
[73] | Garcia, G.G. and de Baranda, B.S. (1996) The Picos de Europa Lead-zinc Deposits, Spain. Mineralogical Record, 27, 177. |
[74] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-188.html, 2020-10-23. |
[75] | Mindat.org. Localities: Australia. http://www.mindat.org/loc-32230.html, 2020-10-23. |
[76] | Ashley, P.M. and Willott, B.R. (1997) Zinc-Lead Skarn Deposits at Leadville, New South Wales, Australia, and Their Distinction from Volcanic-Hosted Massive Sulphides. Mineralium Deposita, 32, 16-33.
https://doi.org/10.1007/s001260050069 |
[77] | Mindat.org. Localities: New Zealand. http://www.mindat.org/loc-15364.html, 2020-10-23. |
[78] | Sclzaefer, M.O. and Gutzmer, J. (2004) Mineral Chemistry of Sphalerite and Galena from Pb-Zn Mineralization Hosted by the Transvaal Supergroup in Griqualand West, South Africa. South African Journal of Geology, 107, 341-354. https://doi.org/10.2113/107.3.341 |
[79] | Karataglis, S.S., McNeilly, T. and Bradshaw, A.D. (1986) Lead and Zinc Tolerance of Agrostis capillaris L. and Festuca rubra L. across a Mine-Pasture Boundary at Minera, North Wales. Phyton (Austria), 26, 65-72. |